DATABASE SYSTEMS
The Complete Book






DATABASE SYSTEMS
The Complete Book

Second Edition

Hector Garcia-Molina
Jeffrey D. Ullman

Jennifer Widom

Department of Computer Science
Stanford University

PEARSON

e

" Prentice
Hall

Upper Saddle River, New Jersey 07458



------_----------_‘
NOTICE: 1

This work is protected by U.S. copyright laws and is provided solely

for the use of college instructors in reviewing course materials for
classroom use. Dissemination or sale of this work, or any part |
1 (including on the World Wide Web), is not permitted.

Editorial Director, Computer Science and Engineering: Marcia J. Horton
Executive Editor: Tracy Dunkelberger
Editorial Assistant: Melinda Haggerty
Director of Marketing: Margaret Waples
Marketing Manager: Christopher Kelly
Senior Managing Editor: Scott Disanno
Production Editor: Irwin Zucker

Art Director: Jayne Conte

Cover Designer: Margaret Kenselaar
Cover Art: Tamara L. Newman
Manufacturing Buyer: Lisa McDowell
Manufacturing Manager: Alan Fischer

PEARSON © 2009, 2002.by Pearson Education Inc.
ST  Pecarson Prentice Hall
Prentice Pearson Education, Inc.
JSENN  Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard
to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

Printed in the United States of America
10987654321

ISBNO-13-60E?01-8
978-0-13-60b701-b

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacién de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey



Preface

This book covers the core of the material taught in the database sequence
at Stanford. The introductory course, CS145, uses the first twelve chapters,
and is designed for all students — those who want to use database systems
as well as those who want to get involved in database implementation. The
second course, CS245 on database implementation, covers most of the rest of
the book. However, some material is covered in more detail in special topics
courses. These include CS346 (implementation project), which concentrates on
query optimization as in Chapters 15 and 16. Also, CS345A, on data mining
and Web mining, covers the material in the last two chapters.

What’s New in the Second Edition

After a brief introduction in Chapter 1, we cover relational modeling in Chapters
2-4. Chapter 4 is devoted to high-level modeling. There, in addition to the
E/R model, we now cover UML (Unified Modeling Language). We also have
moved to Chapter 4 a shorter version of the material on ODL, treating it as a
design language for relational database schemas.

The material on functional and multivalued dependencies has been mod-
ified and remains in Chapter 3. We have changed our viewpoint, so that a
functional dependency is assumed to have a set of attributes on the right. We
have also given explicitly certain algorithms, including the “chase,” that allow
us to manipulate dependencies. We have augmented our discussion of third
normal form to include the 3NF synthesis algorithm and to make clear what
the tradeoff between 3NF and BCNF is.

Chapter 5 contains the coverage of relational algebra from the previous
edition, and is joined by (part of) the treatment of Datalog from the old Chap-
ter 10. The discussion of recursion in Datalog is either moved to the book’s
Web site or combined with the treatment of recursive SQL in Chapter 10 of
this edition.

Chapters 6-10 are devoted to aspects of SQL programming, and they repre-
sent a reorganization and augmentation of the earlier book’s Chapters 6, 7, 8,
and parts of 10. The material on views and indexes has been moved to its own
chapter, number 8, and this material has been augmented with a discussion of



vi PREFACE

important new topics, including materialized views, and automatic selection of
indexes.

The new Chapter 9 is based on the old Chapter 8 (embedded SQL). It is
introduced by a new section on 3-tier architecture. It also includes an expanded
discussion of JDBC and new coverage of PHP.

Chapter 10 collects a number of advanced SQL topics. The discussion of
authorization from the old Chapter 8 has been moved here, as has the discussion
of recursive SQL from the old Chapter 10. Data cubes, from the old Chapter 20,
are now covered here. The rest of the chapter is devoted to the nested-relation
model (from the old Chapter 4) and object-relational features of SQL (from the
old Chapter 9).

Then, Chapters 11 and 12 cover XML and systems based on XML. Ex-
cept for material at the end of the old Chapter 4, which has been moved to
Chapter 11, this material is all new. Chapter 11 covers modeling; it includes
expanded coverage of DTD’s, along with new material on XML Schema. Chap-
ter 12 is devoted to programming, and it includes sections on XPath, XQuery,
and XSLT.

Chapter 13 begins the study of database implementation. It covers disk
storage and the file structures that are built on disks. This chapter is a con-
densation of material that, in the first edition, occupied Chapters 11 and 12.

Chapter 14 covers index structures, including B-trees, hashing, and struc-
tures for multidimensional indexes. This material also condenses two chapters,
13 and 14, from the first edition.

Chapters 15 and 16 cover query execution and query optimization, respec-
tively. They are similar to the old chapters of the same numbers. Chapter 17
covers logging, and Chapter 18 covers concurrency control; these chapters are
also similar to the old chapters with the same numbers. Chapter 19 contains
additional topics on concurrency: recovery, deadlocks, and long transactions.
This material is a subset of the old Chapter 19.

Chapter 20 is on parallel and distributed databases. In addition to material
on parallel query execution from the old Chapter 15 and material on distributed
locking and commitment from the old Chapter 19, there are several new sec-
tions on distributed query execution: the map-reduce framework for parallel
computation, peer-to-peer databases and their implementation of distributed
hash tables.

Chapter 21 covers information integration. In addition to material on this
subject from the old Chapter 20, we have added a section on local-as-view medi-
ators and a section on entity resolution (finding records from several databases
that refer to the same entity, e.g., a person).

Chapter 22 is on data mining. Although there was some material on the
subject in the old Chapter 20, almost all of this chapter is new. It covers asso-
ciation rules and frequent itemset mining, including both the famous A-Priori
Algorithm and certain efficiency improvements. Chapter 22 includes the key
techniques of shingling, minhashing, and locality-sensitive hashing for finding
similar items in massive databases, e.g., Web pages that quote substantially



PREFACE vii

from other Web pages. The chapter concludes with a study of clustering, espe-
cially for massive datasets.

Chapter 23, all new, addresses two important ways in which the Internet
has impacted database technology. First is search engines, where we discuss
algorithms for crawling the Web, the well-known PageRank algorithm for eval-
uating the importance of Web pages, and its extensions. This chapter also
covers data-stream-management systems. We discuss the stream data model
and SQL language extensions, and conclude with several interesting algorithms
for executing queries on streams.

Prerequisites

We have used the book at the “mezzanine” level, in a sequence of courses
taken both by undergraduates and by beginning graduate students. The formal
prerequisites for the course are Sophomore-level treatments of:

1. Data structures, algorithms, and discrete math, and

2. Software systems, software engineering, and programming languages.

Of this material, it is important that students have at least a rudimentary un-
derstanding of such topics as: algebraic expressions and laws, logic, basic data
structures, object-oriented programming concepts, and programming environ-
ments. However, we believe that adequate background is acquired by the Junior
year of a typical computer science program.

Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Support on the World Wide Web

The book’s home page is
http://infolab.stanford.edu/"ullman/dscb.html

You will find errata as we learn of them, and backup materials, including home-
works, projects, and exams. We shall also make available there the sections from
the first edition that have been removed from the second.

In addition, there is an accompanying set of on-line homeworks and pro-
gramming labs using a technology developed by Gradiance Corp. See the sec-
tion following the Preface for details about the GOAL system. GOAL service


http://infolab.Stanford.edu/~ullman/dscb.html

viii PREFACE

can be purchased at http://www.prenhall.com/goal. Instructors who want
to use the system in their classes should contact their Prentice-Hall represen-
tative or request instructor authorization through the above Web site.

There is a solutions manual for instructors available at

http://www.prenhall.com/ullman

This page also gives you access to GOAL and all book materials.

Acknowledgements

We would like to thank Donald Kossmann for helpful discussions, especially con-
cerning XML and its associated programming systems. Also, Bobbie Cochrane
assisted us in understanding trigger semantics for a earlier edition.

A large number of people have helped us, either with the development of this
book or its predecessors, or by contacting us with errata in the books and/or
other Web-based materials. It is our pleasure to acknowledge them all here.

Marc Abromowitz, Joseph H. Adamski, Brad Adelberg, Gleb Ashimov, Don-
ald Aingworth, Teresa Almeida, Brian Babcock, Bruce Baker, Yunfan Bao,
Jonathan Becker, Margaret Benitez, Eberhard Bertsch, Larry Bonham, Phillip
Bonnet, David Brokaw, Ed Burns, Alex Butler, Karen Butler, Mike Carey,
Christopher Chan, Sudarshan Chawathe.

Also Per Christensen, Ed Chang, Surajit Chaudhuri, Ken Chen, Rada
Chirkova, Nitin Chopra, Lewis Church, Jr., Bobbie Cochrane, Michael Cole,
Alissa Cooper, Arturo Crespo, Linda DeMichiel, Matthew F. Dennis, Tom
Dienstbier, Pear] D’Souza, Oliver Duschka, Xavier Faz, Greg Fichtenholtz, Bart
Fisher, Simon Frettloeh, Jarl Friis.

Also John Fry, Chiping Fu, Tracy Fujieda, Prasanna Ganesan, Suzanne
Garcia, Mark Gjol, Manish Godara, Seth Goldberg, Jeff Goldblat, Meredith
Goldsmith, Luis Gravano, Gerard Guillemette, Himanshu Gupta, Petri Gyn-
ther, Zoltan Gyongyi, Jon Heggland, Rafael Hernandez, Masanori Higashihara,
Antti Hjelt, Ben Holtzman, Steve Huntsberry.

Also Sajid Hussain, Leonard Jacobson, Thulasiraman Jeyaraman, Dwight
Joe, Brian Jorgensen, Mathew P. Johnson, Sameh Kamel, Jawed Karim, Seth
Katz, Pedram Keyani, Victor Kimeli, Ed Knorr, Yeong-Ping Koh, David Koller,
Gyorgy Kovacs, Phillip Koza, Brian Kulman, Bill Labiosa, Sang Ho Lee, Young-
han Lee, Miguel Licona.

Also Olivier Lobry, Chao-Jun Lu, Waynn Lue, John Manz, Arun Marathe,
Philip Minami, Le-Wei Mo, Fabian Modoux, Peter Mork, Mark Mortensen,
Ramprakash Narayanaswami, Hankyung Na, Mor Naaman, Mayur Naik, Marie
Nilsson, Torbjorn Norbye, Chang-Min Oh, Mehul Patel, Soren Peen, Jian Pei.

Also Xiaobo Peng, Bert Porter, Limbek Reka, Prahash Ramanan, Nisheeth
Ranjan, Suzanne Rivoire, Ken Ross, Tim Roughgarten, Mema Roussopou-
los, Richard Scherl, Loren Shevitz, Shrikrishna Shrin, June Yoshiko Sison,


http://www.prenliall.com/goal
http://www.prenhall.com/ullman

PREFACE ix

Man Cho A. So, Elizabeth Stinson, Qi Su, Ed Swierk, Catherine Tornabene,
Anders Uhl, Jonathan Ullman, Mayank Upadhyay.

Also Anatoly Varakin, Vassilis Vassalos, Krishna Venuturimilli, Vikram Vi-
jayaraghavan, Terje Viken, Qiang Wang, Steven Whang, Mike Wiacek, Kristian
Widjaja, Janet Wu, Sundar Yamunachari, Takeshi Yokukawa, Bing Yu, Min-Sig
Yun, Torben Zahle, Sandy Zhang.

The remaining errors are ours, of course.

H. G.-M.

J.D. U.

J. W.
Stanford, CA
March, 2008



GOAL

Gradiance Online Accelerated Learning (GOAL) is Pearson’s premier online
homework and assessment system. GOAL is designed to minimize student frus-
tration while providing an interactive teaching experience outside the classroom.
(Visit www.prenhall.com/goal for a demonstration and additional information.)

With GOAL’s immediate feedback and book-specific hints and pointers,
students will have a more efficient and effective learning experience. GOAL
delivers immediate assessment and feedback via two kinds of assignments: mul-
tiple choice homework exercises and interactive lab projects.

The homework consists of a set of multiple choice questions designed to test
student knowledge of a solved problem. When answers are graded as incorrect,
students are given a hint and directed back to a specific section in the course
textbook for helpful information. Note: Students that are not enrolled in a
class may want to enroll in a “Self-Study Course” that allows them to complete
the homework exercises on their own.

Unlike syntax checkers and compilers, GOAL’s lab projects check for both
syntactic and semantic errors. GOAL determines if the student’s program runs
but more importantly, when checked against a hidden data set, verifies that it
returns the correct result. By testing the code and providing immediate feed-
back, GOAL lets you know exactly which concepts the students have grasped
and which ones need to be revisited.

In addition, the GOAL package specific to this book includes programming
exercises in SQL and XQuery. Submitted queries are tested for correctness and
incorrect results lead to examples of where the query goes wrong. Students can
try as many times as they like but writing queries that respond correctly to the
examples is not sufficient to get credit for the problem.

Instructors should contact their local Pearson Sales Representative for sales
and ordering information for the GOAL Student Access Code and textbook
value package.


http://www.prenhall.com/goal

xi

About the Authors

HECTOR GARCIA-MOLINA is the L. Bosack and S. Lerner Professor of Com-
puter Science and Electrical Engineering at Stanford University. His research
interests include digital libraries, information integration, and database applica-
tion on the Internet. He was a recipient of the SIGMOD Innovations Award and
a member of PITAC (President’s Information-Technology Advisory Council).
He currently serves on the Board of Directors of Oracle Corp.

JEFFREY D. ULLMAN is the Stanford W. Ascherman Professor of Computer
Science (emeritus) at Stanford University. He is the author or co-author of
16 books, including Elements of ML Programming (Prentice Hall 1998). His
research interests include data mining, information integration, and electronic
education. He is a member of the National Academy of Engineering, and recip-
ient of a Guggenheim Fellowship, the Karl V. Karlstrom Qutstanding Educator
Award, the SIGMOD Contributions and Edgar F. Codd Innovations Awards,
and the Knuth Prize.

JENNIFER WIDOM is Professor of Computer Science and Electrical Engi-
neering at Stanford University. Her research interests span many aspects of
nontraditional data management. She is an ACM Fellow and a member of the
National Academy of Engineering, she received the ACM SIGMOD Edgar F.
Codd Innovations Award in 2007 and was a Guggenheim Fellow in 2000, and she
has served on a variety of program committees, advisory boards, and editorial
boards.






Table of Contents

The Worlds of Database Systems

1.1 The Evolution of Database Systems . .. ... ..........
1.1.1 Early Database Management Systems . . ... ... ...
1.1.2 Relational Database Systems . . ... ... ........
1.1.3 Smaller and Smaller Systems . ... ... .........
1.1.4 Bigger and Bigger Systems . . . ... ... ... .....
1.1.5 Information Integration . .. ... ... ..........

1.2 Overview of a Database Management System . . ... ... ...
1.2.1 Data-Definition Language Commands . . . ... ... ..
1.2.2 Overview of Query Processing . . . . .. ... ... ....
1.2.3 Storage and Buffer Management . . .. ..........
1.2.4 Transaction Processing . . . . . ... .. ... .......
1.2.5 The Query Processor . . . . . . ... ... .........

1.3 Outline of Database-System Studies . ... ... .........

1.4 Referencesfor Chapter 1. . .. .. ... .. ............

Relational Database Modeling

The Relational Model of Data

2.1 An Overviewof DataModels . . . ... ... ... ........
2.1.1 What is a Data Model? . . ... ..............
2.1.2 Important Data Models . . .. ... ............
2.1.3 The Relational Model in Brief. . . . . .. ... ... ...
2.1.4 The Semistructured Model in Brief . . . . ... ... ...
2.1.5 OtherDataModels. . . ... ... .............
2.1.6 Comparison of Modeling Approaches . . . . ... ... ..

2.2 Basics of the Relational Model . . . ... ... ..........
221 Attributes . . . .. ... ... L.
222 Schemas . .. ... ... ... ... ... . . ..
223 Tuples . . . ... ... e
224 Domains. . . . . . . . . . e
2.2.5 Equivalent Representations of a Relation . ... ... ..

xiii



Xiv

TABLE OF CONTENTS

2.26 RelationInstances . .. .. ... ... ... .. ......
227 KeysofRelations. . . ... ... ... ... ........
2.2.8 An Example Database Schema . . . ... .........
2.29 Exercisesfor Section2.2 . . . .. .. ... ... .. ...,

2.3 Defining a Relation Schema in SQL. . . . ... ... .. ... ..
2.3.1 RelationsinSQL . . ... ... ... ............
232 DataTypes . . . . .. . i i e
2.3.3 Simple Table Declarations . . . . .. ... .........
2.3.4 Modifying Relation Schemas . . ..............
2.3.5 Default Values . . ... ... .. ... ... ... . ....
23.6 DeclaringKeys . . ... ... ... ... ... ...

2.3.7 Exercises for Section 2.3 . . . .. ... ...
24 An Algebraic Query Language . . ... ..............
2.4.1 Why Do We Need a Special Query Language?. . . . . . .
24.2 Whatisan Algebra? . . . .. .. ... ... ... ...
2.4.3 Overview of Relational Algebra . . . . . ... ... .. ..
2.4.4 Set Operations on Relations . . . . . .. ... .. .....

245 Projection. .. ... ... .. ... oo
246 Selection . ... ... .. ...
2.4.7 Cartesian Product . . ... ... ... ... ... .....

248 NaturalJoins . . . . ... ... ... oo
249 Theta-Joins . . . . ... ... ... . ... . ...
2.4.10 Combining Operations to Form Queries . . . .. ... ..
2.4.11 Naming and Renaming. . . . . . . ... ... .. .....
2.4.12 Relationships Among Operations . . . . ... .. ... ..
2.4.13 A Linear Notation for Algebraic Expressions . ... ...
2.4.14 Exercises for Section 2.4 . . . . . . ... ... ...
2.5 Constraintson Relations . . . . ... .. .. .. ... ... ...

2.5.1 Relational Algebra as a Constraint Language . . . . . ..
2.5.2 Referential Integrity Constraints . . .. ... .. .....
2.5.3 Key Constraints . . . ... ... ... .. .........
2.5.4 Additional Constraint Examples . . .. ... .. ... ..
2.5.5 Exercises for Section 2.5 . . . . ... ... ... oL,
2.6 Summaryof Chapter 2. . .... ... ... ... .........

2.7 References for Chapter 2. . . . .. .. ... ... ... . .....

Design Theory for Relational Databases

3.1 Functional Dependencies . . . . . .. ... ... ..........
3.1.1 Definition of Functional Dependency . . . . ... ... ..
312 KeysofRelations . . . . ... ... ... ..........

3.1.3 Superkeys . . ... . .. ...
3.1.4 Exercises for Section 3.1 . . .. ... ... ... ......
3.2 Rules About Functional Dependencies . . . ... .........
3.2.1 Reasoning About Functional Dependencies . . ... ...
3.2.2 The Splitting/Combining Rule . . . ... ... ......



TABLE OF CONTENTS XV

3.3

3.4

3.5

3.6

3.7

3.8
3.9

3.2.3 Trivial Functional Dependencies . . ... ...... ... 74
3.2.4 Computing the Closure of Attributes . . . . .. ... ... 75
3.2.5 Why the Closure Algorithm Works . . . . ... ... ... 7
3.2.6 The Transitive Rule . . ... ... ... .......... 79
3.2.7 Closing Sets of Functional Dependencies . . . . . ... .. 80
3.2.8 Projecting Functional Dependencies . . . ... ... ... 81
329 ExercisesforSection3.2 . . ... ... ... ........ 83
Design of Relational Database Schemas . . ... ... ...... 85
3.31 Anomalies. . ... ... ... ... . .. e, 86
3.3.2 Decomposing Relations . . . . ............... 86
3.3.3 Boyce-Codd NormalForm . . . ... ... ......... 88
3.34 Decompositioninto BCNF. . . ... ... .. ........ 89
3.3.5 Exercises for Section3.3 . . . ... ... ... ... 92
Decomposition: The Good, Bad,and Ugly . . . . . ... ... .. 93
3.4.1 Recovering Information from a Decomposition . .. ... 94
3.4.2 The Chase Test for Lossless Join . . . . . ... ...... 96
343 Whythe Chase Works . . . . . ... ... .. ....... 99
3.4.4 Dependency Preservation . ... .............. 100
3.4.5 ExercisesforSection3.4 . . ... ... ... ........ 102
Third Normal Form . .. ... ... ................ 102
3.5.1 Definition of Third Normal Form . . . ... ... ..... 102
3.5.2 The Synthesis Algorithm for 3NF Schemas ... ... .. 103
3.5.3 Why the 3NF Synthesis Algorithm Works . . . . ... .. 104
3.5.4 Exercises for Section3.5 . . . .. ... ... ... ... .. 105
Multivalued Dependencies . . . . . . . ... .. ... ... .... 105
3.6.1 Attribute Independence and Its Consequent Redundancy 106
3.6.2 Definition of Multivalued Dependencies . . ... ... .. 107
3.6.3 Reasoning About Multivalued Dependencies . . . . . . . . 108
3.6.4 Fourth NormalForm . . ... .. ... ........... 110
3.6.5 Decomposition into Fourth Normal Form . ... ... .. 111
3.6.6 Relationships Among Normal Forms . . . ... ... ... 113
3.6.7 Exercisesfor Section3.6 . . . . ... ... ... ...... 113
An Algorithm for Discovering MVD’s . . . ... ... ... ... 115
3.71 The Closure and the Chase . . ... ... ......... 115
3.7.2 Extending the ChasetoMVD’s . . . . . ... ... .... 116
3.7.3 Why the Chase Works for MVD’s . . ... ... ..... 118
3.74 Projecting MVD’s . .. ... ... ... ... ... 119
3.7.5 [Exercises for Section 3.7 . . . . ... ... .. .. .. ... 120
Summary of Chapter 3 . . . . . . . . ... ... ... ....... 121

References for Chapter 3. . . . . . . ... ... ... ....... 122



xvi TABLE OF CONTENTS
4 High-Level Database Models 125
4.1 'The Entity/Relationship Model . . . . . . ... ... .. ... .. 126
411 Entity Sets . . .. ... ... o oo 126
4.1.2 Attributes . . . .. ... oo oL 126
4.1.3 Relationships . . . ... ... ... ... ... .. 127
4.1.4 Entity-Relationship Diagrams . . . . . ... ... ... .. 127
4.1.5 Instances of an E/R Diagram . . .. ... ......... 128
4.1.6 Multiplicity of Binary E/R Relationships ... ... ... 129
4.1.7 Multiway Relationships . . . . ... ... ... .. .... 130
4.1.8 Rolesin Relationships . . . . . . .. ... ... .. .... 131
4.1.9 Attributes on Relationships . . . . ... ... . ... ... 134
4.1.10 Converting Multiway Relationships to Binary . . . . . . . 134
4.1.11 Subclasses in the E/R Model . . . ... .. ........ 135
4.1.12 Exercises for Section 4.1 . . . . . ... ... ... ... 138

4.2 Design Principles . . . . ... .. ... o oo o 140
4.2.1 Faithfulness . . . . ... ... ... ... ... ....... 140
4.2.2 Avoiding Redundancy . . ... ... ... ......... 141
4.2.3 Simplicity Counts . . . . . ... ... ..o 142
4.24 Choosing the Right Relationships . . . . . ... ... ... 142
4.2.5 Picking the Right Kind of Element . . . . . .. ... ... 144
4.2.6 Exercisesfor Section 4.2 . . . .. . ... ... ... ..., 145

4.3 Constraintsinthe E/RModel . . . . .. .. ............ 148
431 Keysinthe E/RModel ... ... ... .......... 148
4.3.2 Representing Keysinthe E/R Model . ... ....... 149
4.3.3 Referential Integrity . ... ... ... ... .... ... 150
4.3.4 Degree Constraints . . . . . ... .. .. ... ... ... 151
4.3.5 Exercises for Section4.3 . . . .. ... ... L. 151

44 Weak Entity Sets . . . . .. ... ... ... . o oL, 152
4.4.1 Causes of Weak Entity Sets . . . .. . ... ........ 152
4.4.2 Requirements for Weak Entity Sets . . . . . . .. ... .. 153
4.4.3 Weak Entity Set Notation . . . . .. .. ... ....... 155
4.4.4 Exercises for Section4.4 . .. ... ... ... .. ... 156

4.5 From E/R Diagrams to Relational Designs . . . . . ... ... .. 157
4.5.1 From Entity Sets to Relations . . . . . ... ... ..... 157
4.5.2 From E/R Relationships to Relations . . ... ... ... 158
4.5.3 Combining Relations . . . . ... .. ... ... ...... 160
4.5.4 Handling Weak Entity Sets . . . .. ... ... ...... 161
4.5.5 Exercises for Section4.5 . . . . ... .. ... 163

4.6 Converting Subclass Structures to Relations . . . . . .. ... .. 165
46.1 E/R-Style Conversion . ... ................ 166
4.6.2 An Object-Oriented Approach . . . .. ... ....... 167
4.6.3 Using Null Values to Combine Relations . . . . . ... .. 168
4.6.4 Comparison of Approaches . . . .. .. ... ....... 169
4.6.5 Exercises for Section4.6 . . . .. ... ... ... ... .. 171

4.7 Unified Modeling Language . . ... ... ... .......... 17



TABLE OF CONTENTS

471 UMLClasses . . ... . ...,
472 Keysfor UMLclasses ... ... ............
4.7.3 Associations. . . ... ... ... ... ... ... ..
4.7.4 Self-Associations . . . ... ... ... ... .. ...,
4.7.5 Association Classes . . . . . . .. ... ... ......
476 Subclassesin UML . . ... ... ... .........
4.7.7 Aggregations and Compositions . . . . .. ... ....
4.7.8 Exercises for Section 4.7 . . . . . ... ... ... ...
4.8 From UML Diagrams to Relations . . . . ... ... .. ...
4.8.1 UML-to-Relations Basics . ... ............
4.8.2 From UML Subclasses to Relations . . . . . ... ...
4.8.3 From Aggregations and Compositions to Relations . . . .
484 The UML Analog of Weak Entity Sets . . . . ... ..
4.8.5 Exercises for Section4.8 . . . . .. ... .. ... ...
4.9 Object Definition Language . . . . .. ... ... ... ....
4.9.1 Class Declarations . . .. .. ... ... ........
4.9.2 Attributesin ODL . . . . . ... .. ... ... ...,
4.9.3 Relationshipsin ODL . ... ... ...........
4.9.4 Inverse Relationships . . . . . .. .. ... e
4.9.5 Multiplicity of Relationships ... ... ... ... ..
496 TypesinODL . ... ... ...............
4.9.7 Subclassesin ODL . . ... ... ............
4.9.8 Declaring KeysinODL . .. ... ...........
4.9.9 Exercises for Section4.9 . . . .. ... ... ... ...
4.10 From ODL Designs to Relational Designs . . . ... ... ..
4.10.1 From ODL Classes to Relations . . . . . .. ... ...
4.10.2 Complex Attributesin Classes . . ... ........
4.10.3 Representing Set-Valued Attributes . .. .......
4.10.4 Representing Other Type Constructors. . . . ... ..
4.10.5 Representing ODL Relationships . . . ... ... ...
4.10.6 Exercises for Section4.10 . . . . .. ... .. .....
4.11 Summary of Chapter4 . . . . . . ... ... ... .. .....
4.12 References for Chapter4 . . . . . . .. .. .. ... ......

II Relational Database Programming

5 Algebraic and Logical Query Languages
5.1 Relational Operationson Bags . . . .. .. ... ... ....
511 WhyBags? . . ... .. ... ... . ... . ...,
5.1.2 Union, Intersection, and Difference of Bags . . . . ..
5.1.3 Projectionof Bags . . ... ...............
5.1.4 SelectiononBags. .. ..................
51.5 ProductofBags .....................
516 JoinsofBags .......................



xviii

5.2

5.3

5.4

5.5
5.6

6 The
6.1

6.2

TABLE OF CONTENTS

5.1.7 Exercises for Section 5.1 . . . . . ... ... ... ..., 212
Extended Operators of Relational Algebra . . . . ... ... ... 213
5.2.1 Duplicate Elimination . . . ... ... ... ........ 214
5.2.2 Aggregation Operators . . . . . ... ... ... ...... 214
523 Grouping . . ... ... ... e 215
5.24 The Grouping Operator . . . .. ... ... ... ..... 216
5.2.5 Extending the Projection Operator . . . . . ... .. ... 217
5.2.6 The Sorting Operator . . . ... ... ........... 219
52.7 Outerjoins . . . . .. . . . . e 219
5.2.8 Exercisesfor Section 5.2 . . . .. ... ... ... 222
A LogicforRelations . . . . . ... ... .............. 222
5.3.1 Predicatesand Atoms . ... ....... . ........ 223
5.3.2 Arithmetic Atoms . .. ... ... ............. 223
5.3.3 Datalog Rules and Queries . .. ... ........... 224
5.34 Meaning of Datalog Rules . . . . ... ........... 225
5.3.5 Extensional and Intensional Predicates . . . . .. .. ... 228
5.3.6 Datalog Rules AppliedtoBags . . ... .......... 228
5.3.7 Exercisesfor Section 5.3 . . . . .. ... ... .. L. 230
Relational Algebra and Datalog . . . . . ... ... ... ..... 230
5.4.1 Boolean Operations . ... ................. 231
54.2 Projection . . . .. ... .. .. e 232
54.3 Selection . .. ... ... ... e 232
544 Product .. ... . ... ... e 235
545 Joins. . . ... L e 235
5.4.6 Simulating Multiple Operations with Datalog . . . . . . . 236
5.4.7 Comparison Between Datalog and Relational Algebra . . 238
5.4.8 Exercises for Section 5.4 . . . . . ... ... L. 238
Summary of Chapter 5. . . . . . .. ... ... ... ... ... 240
References for Chapter 5. . . . . . . ... .. ... ... ..... 241
Database Language SQL 243
Simple Queriesin SQL . . . . . . . .. ... ... 244
6.1.1 Projectionin SQL . .. ... ... ... ... ..., 246
6.1.2 SelectioninSQL . .. ... ... ... ... . ... .. 248
6.1.3 Comparisonof Strings . . . . . ... ............ 250
6.1.4 Pattern Matchingin SQL . . .. ... .. .. .. ..... 250
6.1.5 Datesand Times . . .. .. ... ... ... ... ... 251
6.1.6 Null Values and Comparisons Involving NULL . . . . . .. 252
6.1.7 The Truth-Value UNKNOWN . . . . . . ... ... ... ... 253
6.1.8 Orderingthe Qutput . . . . . .. ... . .......... 255
6.1.9 Exercises for Section 6.1 . . . ... ... ... ... ..., 256
Queries Involving More Than One Relation . . . ... ... ... 258
6.2.1 Productsand Joinsin SQL . ... ... ... ....... 259
6.2.2 Disambiguating Attributes . . .. ... ... ... ..., 260

6.2.3 Tuple Variables . . . . ... ... ... ... ... ..., 261



TABLE OF CONTENTS

6.2.4 Interpreting Multirelation Queries . . ... ... ... ..
6.2.5 Union, Intersection, and Difference of Queries . . . . . . .

6.2.6 Exercises for Section 6.2 . . . . ... ... ... ......
6.3 Subqueries. . . . . .. ..
6.3.1 Subqueries that Produce Scalar Values . . . . . ... ...
6.3.2 Conditions Involving Relations . . . .. ... ... ....
6.3.3 Conditions Involving Tuples . . . . . ... .........
6.3.4 Correlated Subqueries . . . .. ... ... .. .......
6.3.5 Subqueries in FROM Clauses . . ... ... ... ......
6.3.6 SQL Join Expressions . . . . .. .. ... ... ...

6.3.7 NaturalJoins . . .. .. ... ... ... .. ........
6.3.8 Outerjoins. . . ... ... ... ... .. ... ...,
6.3.9 Exercisesfor Section 6.3 . . . . .. ... ... ... ...
6.4 Full-Relation Operations . . . . . . ... ... ... ... .....
6.4.1 Eliminating Duplicates . . . . . . ... ... ... .....
6.4.2 Duplicates in Unions, Intersections, and Differences . .
6.4.3 Grouping and Aggregationin SQL . . . . ... ... ...

6.4.4 Aggregation Operators. . . . . ... ... .........
6.45 Grouping . ... .. .. .. ...
6.4.6 Grouping, Aggregation,and Nulls . .. .. ... ... ..
6.4.7 HAVINGClauses . . . . . . . . . ... .. .. .. ...
6.4.8 Exercises for Section 6.4 . . . .. .. ... ... L.
6.5 Database Modifications . . ... ... ... ... .. .......
6.5.1 Imsertion. . ... ........ ... ... .. ... ...

6.5.2 Deletion . . . . ... . ... e
6.5.3 Updates . . . . ... . ... i

6.5.4 Exercises for Section 6.5 . . . . ... ... ... .. ...
6.6 Transactionsin SQL . . .. .. .. ... .. ... . ... . ...
6.6.1 Serializability . . . ... ... ... .. .. ... ... ..
6.6.2 Atomicity . ... ... ... .. .. L L
6.6.3 Transactions . ... ... ... ... ... ...,
6.6.4 Read-Only Transactions . . . . ... ... .........

665 DirtyReads . . . ... ... ... ... .. .........
6.6.6 Other Isolation Levels . . . .. ... ... .........
6.6.7 Exercises for Section 6.6 . . . . ... ... ... .. ....
6.7 Summary of Chapter6 . .. ... ... ... ... ... .......
6.8 Referencesfor Chapter 6 . . . . . . ... ... ... ........

Constraints and Triggers

71 Keysand ForeignKeys. . . ... ... ... ... ... ......
7.1.1 Declaring Foreign-Key Constraints . . . . ... ... ...
7.1.2 Maintaining Referential Integrity . . . . .. ... ... ..
7.1.3 Deferred Checking of Constraints . . . . .. ... .. ...
7.1.4 Exercises for Section 7.1 . . . . . ... ... .. ...

7.2 Constraints on Attributesand Tuples. . . . . . . ... ... ...

Xix



TABLE OF CONTENTS

7.2.1 Not-Null Constraints . . . . . . . .. .. ... ....... 319
7.2.2 Attribute-Based CHECK Constraints . . . . . ... ... .. 320
7.2.3 Tuple-Based CHECK Constraints . . . . .. ... ... ... 321
7.2.4 Comparison of Tuple- and Attribute-Based Constraints . 323
7.2.5 Exercises for Section 7.2 . . . . ... ... ... ... ... 323
7.3 Modification of Constraints . . . . ... ... ....... ... 325
7.3.1 Giving Names to Constraints . . . . ... ......... 325
7.3.2 Altering Constraints on Tables . . ... ... ... .... 326
7.3.3 Exercises for Section 7.3 . . . . . .. ... ... 327
7.4 Assertions . . . . . . . . ... e e e e e e e 328
7.4.1 Creating Assertions . ... ... .. ... .. ... ..., 328
7.4.2 Using Assertions . . .. ... ... ... ... .. ..... 329
7.4.3 Exercisesfor Section 7.4 . . . . . . ... .. ... ..., 330
7.5 Triggers . . . . . . L e e e 332
751 TriggersinSQL. . ... ... .. ... ... ... 332
7.5.2 The Options for Trigger Design . . . . ... ... ..... 334
7.5.3 Exercises for Section 7.5 . . . . . ... ... o 337
7.6 Summaryof Chapter 7. . ... ... ... ... ... ....... 339
7.7 Referencesfor Chapter 7. . . . . . .. ... ... ......... 339
Views and Indexes 341
81 Virtual Views . . . . . . . . . . . . e 341
8.1.1 Declaring Views . . ... ... ... .. .......... 341
812 QueryingViews. . . . . ... ... .. . ... 343
8.1.3 Renaming Attributes . . . . . .. ... ... ... .. ... 343
8.1.4 Exercises for Section 8.1 . . . ... .. ... ... ..... 344
8.2 Modifying Views . . . . . ... ... ... ... o 344
821 ViewRemoval ... ..................... 345
8.2.2 Updatable Views . . . . ... .. .. ... ... 345
8.2.3 Instead-Of Triggerson Views . . . . ... ......... 347
8.2.4 Exercises for Section 8.2 . . . . . ... .. ... ... ... 349
83 Indexesin SQL . . . . . . . .. ... ... oo, 350
8.3.1 Motivation for Indexes . . . . . ... .. ... .. ... .. 350
8.3.2 DeclaringIndexes. . . . . . . ... ... ... 351
8.3.3 Exercisesfor Section 83 . . . . ... .. ... ... .... 352
84 Selectionof Indexes . . ... ... ... ... ... ... 352
8.4.1 A Simple Cost Model . ... ................ 352
84.2 Some Usefullndexes . . ... ................ 353
8.4.3 Calculating the Best Indexes to Create. . . . . . ... .. 355
8.4.4 Automatic Selection of Indexes to Create . . . ... ... 357
8.4.5 Exercisesfor Section 84 . . .. ... .. .. .. ... .. 359
8.5 Materialized Views . . . . . .. ... .. ... o 359
8.5.1 Maintaining a Materialized View . . . . . ... ... ... 360
8.5.2 Periodic Maintenance of Materialized Views . . . . . . . . 362

8.5.3 Rewriting Queries to Use Materialized Views . . . . . .. 362



TABLE OF CONTENTS xxi

8.5.4 Automatic Creation of Materialized Views . . . . . . . .. 364
8.5.5 [Exercises for Section 85 . . . . . ... ... ... 365

86 Summaryof Chapter 8. . ............. . ........ 366
8.7 Referencesfor Chapter 8 . . . . . . . ... .. ... ... ... . 367
9 SQL in a Server Environment 369
9.1 The Three-Tier Architecture . ... .. .. ... .. ....... 369
9.1.1 The Web-Server Tier . . . . . .. ... ... ........ 370
9.1.2 The Application Tier. . . . . . . .. ... ... ...... 371
9.1.3 The Database Tier . . . .. .. ... ... ... ...... 372

9.2 The SQL Environment . . . . . . .. ... ... ... ....... 372
9.2.1 Environments . . . ... .. ... ... ... 373
922 Schemas . ... ... ... ... ... ... 374
923 Catalogs . . . . . . .. ... e 375
9.2.4 Clients and Servers in the SQL Environment . ... ... 375
925 Conmections . . . . . . .« ot it 376
926 Sessions . . .. ... ... e 377
927 Modules . . ... .. ... e 378

9.3 The SQL/Host-Language Interface . . . . . ... ... ... ... 378
9.3.1 The Impedance Mismatch Problem . . . . ... ... ... 380
9.3.2 Connecting SQL to the Host Language. . . ... ... .. 380
9.3.3 The DECLARE Section . . . . . .. ... ... ........ 381
9.3.4 Using Shared Variables . . . ... ... .......... 382
9.3.5 Single-Row Select Statements . . . . ... ......... 383
936 Cursors . . . . . . .. .ttt e 383
9.3.7 Modifications by Cursor . . . . ... ... ......... 386
9.3.8 Protecting Against Concurrent Updates . . ... ... .. 387
939 DynamicSQL. .. ... .. .. .. ... ... 388
9.3.10 Exercisesfor Section 9.3 . . . . ... ... ... ... ... 390

9.4 Stored Procedures . . ........ ... .. .. .. .0 391
9.4.1 Creating PSM Functions and Procedures . .. ... ... 391
9.4.2 Some Simple Statement Formsin PSM. . . ... ... .. 392
9.4.3 Branching Statements . . . . . ... ... ... ... 394
944 Queriesin PSM. .. ... ... ... ... ... . 395
945 LoopsinPSM . . ... ... ... ... .. ... ..... 396
946 For-Loops . . .. ... . ... ... ... 398
947 Exceptionsin PSM . . ... ... ... .. ..., 400
9.4.8 Using PSM Functions and Procedures . . ... ... ... 402
9.4.9 Exercisesfor Section9.4 . . . . ... ... ... 402

9.5 Using a Call-Level Interface . . . . . .. ... .. ......... 404
9.5.1 Imtroduction to SQL/CLI . ... .. ... ......... 405
9.5.2 Processing Statements . . . . ... ... ..., 407
9.5.3 Fetching Data From a Query Result . .. ... ... ... 408
9.5.4 Passing Parameters to Queries . . ... ... ....... 410

9.5.5 Exercises for Section 9.5 . . . . ... ... .. ... ... 412



xxii TABLE OF CONTENTS
9.6 JDBC . . . . ... e e 412
9.6.1 IntroductiontoJDBC . ... ................ 412
9.6.2 Creating Statementsin JDBC . . . . . .. ... .... .. 413
9.6.3 Cursor Operationsin JDBC . . . . . . .. e e e e 415
9.6.4 Parameter Passing . . ... ... .............. 416
9.6.5 Exercisesfor Section9.6 . . ... ....... ... ... 416

9.7 PHP . . . . e e e e 416
971 PHPBasics . . ........ ... ... ... ... 417
9.7.2 Arrays . . . . .. ... 418
9.7.3 The PEARDB Library .. ... .............. 419
9.74 Creating a Database Connection UsingDB . .. ... .. 419
9.7.5 Executing SQL Statements . . ... ... ......... 419
9.7.6 Cursor Operationsin PHP . . . .. ... ... ...... 420
9.7.7 DynamicSQLinPHP . ... ... ... .......... 421
9.7.8 Exercises for Section 9.7 . . . . . .. ... L. 422

9.8 Summaryof Chapter 9. . . . . ... ... ... ... ....... 422
9.9 Referencesfor Chapter 9. . .. ... ... ... ... ....... 423
10 Advanced Topics in Relational Databases 425
10.1 Security and User Authorizationin SQL . . . . . ... ... ... 425
10.1.1 Privileges . . . . . . .. ..o o o 426
10.1.2 Creating Privileges . . . . . . .. ... ... ... ..... 427
10.1.3 The Privilege-Checking Process . . . . . . . ... ... .. 428
10.1.4 Granting Privileges . . . . . . .. .. ... .. ... ..., 430
10.1.5 Grant Diagrams . . ... ... ... ... ......... 431
10.1.6 Revoking Privileges . . . . . ... ... .. ... ... .. 433
10.1.7 Exercises for Section 10.1 . . . . . ... ... .. ... .. 436

10.2 Recursionin SQL . . . . ... .. ... .. L oL oL 437
10.2.1 Defining Recursive Relations in SQL . . . . .. ... ... 437
10.2.2 Problematic Expressions in Recursive SQL . . . .. . .. 440
10.2.3 Exercises for Section 10.2 . . . . . . ... ... ... ... 443

10.3 The Object-Relational Model . . . . . ... .. ... ... ..... 445
10.3.1 From Relations to Object-Relations . . . .. .. ... .. 445
10.3.2 Nested Relations . . . ... ... .. ... ......... 446
10.3.3 References . . . . . . . . . . . e 447
10.3.4 Object-Oriented Versus Object-Relational . . . . . . . .. 449
10.3.5 Exercises for Section 10.3 . . . . .. ... . ... ... .. 450

10.4 User-Defined TypesinSQL . . ... ... ... ... ....... 451
10.4.1 Defining TypesinSQL. . . . .. .. ... ... ... ... 451
10.4.2 Method Declarationsin UDT’s . . . .. ... .. ..... 452
10.4.3 Method Definitions . . . . . ... . ... ... ... ... 453
10.4.4 Declaring Relations witha UDT . . .. ... ... .. .. 454
104.5 References. . . . . . . . ... . .o 454
10.4.6 Creating Object ID’sfor Tables . . . . . . ... ... ... 455

10.4.7 Exercises for Section 10.4 . . . . . . .. .. ... ... .. 457



TABLE OF CONTENTS xxiii

10.5 Operations on Object-Relational Data . . . .. . ... ... ... 457
10.5.1 Following References . . . . . . ... .. ... ....... 457
10.5.2 Accessing Components of Tuples with a UDT . . . . . . . 458
10.5.3 Generator and Mutator Functions . . . ... .. ... .. 460
10.5.4 Ordering Relationshipson UDT’s . . . . . . ... ... .. 461
10.5.5 Exercises for Section 10.5 . . . ... .. ... .. ..... 463

10.6 On-Line Analytic Processing . . ... ... ... ......... 464
10.6.1 OLAP and Data Warehouses . . . ... .......... 465
10.6.2 OLAP Applications . . . . .. ... ... ......... 465
10.6.3 A Multidimensional View of OLAP Data . .. ... ... 466
10.6.4 Star Schemas . . . . . . . .. . ... ... ... 467
10.6.5 Slicing and Dicing . . . .. . . .. ... .. ... ... 469
10.6.6 Exercises for Section 10.6 . . . . ... ... ... ... .. 472

10.7 DataCubes . . . . .. . .. . . e 473
10.7.1 The Cube Operator . . .. ... ... ........... 473
10.7.2 The Cube Operatorin SQL . . . . . ... .. ... .. .. 475
10.7.3 Exercises for Section 10.7 . . . . .. ... ... ... ... 477

10.8 Summary of Chapter 10 . . . . . . . . ... ... ... ... ... 478

10.9 References for Chapter 10 . . . . . . . . . . .. .. ... ..... 480

III Modeling and Programming for Semistructured

Data 481
11 The Semistructured-Data Model 483
11.1 Semistructured Data, . . . . . . .. .. ... .. ... . ...... 483
11.1.1 Motivation for the Semistructured-Data Model . . . . . . 483
11.1.2 Semistructured Data Representation . . . ... ... ... 484
11.1.3 Information Integration Via Semistructured Data . . . . . 486
11.1.4 Exercises for Section 11.1 . . . ... .. ... .. ..... 487

11.2 XML . . . . e e e e e 488
11.2.1 Semantic Tags . . . .. .. ... ... .. ... 488
11.2.2 XML With and Without a Schema . . . . ... ... ... 489
11.2.3 Well-Formed XML . . ... ... .. ... ......... 489
11.2.4 Attributes . . . . . . . . . . 490
11.2.5 Attributes That Connect Elements ............. 491
11.2.6 NameSpaces . . . . v v v v v v v e et e e e e e e 493
11.2.7 XML and Databases . . . . .. ... ... ......... 493
11.2.8 Exercises for Section 11.2 . . . . .. ... ... ... ... 495

11.3 Document Type Definitions . . . . . ... ... .. ... ..... 495
11.3.1 The Formof aDTD .. .. ... ... ... ... ..... 495
11.3.2 UsingaDTD . . .. ... .. ... . .. 499
11.3.3 Attribute Lists . . . . . . . . . . .. ... ... .. .... 499
11.3.4 Identifiers and References . . . . .. .. .. ... .. ... 500

11.3.5 Exercises for Section 11.3 . . . . .. ... ... ... ... 502



xxiv TABLE OF CONTENTS
114 XML Schema . . . . . . ... ... .. . . e 502
11.4.1 The Form of an XML Schema . . . . .. ... ... .... 502
1142 Elements . ... ... ... ... ... ... ... 503 -
114.3 Complex Types . . . . . .« o o o v i i i v it i oo 504
1144 Attributes . . . . . ... ... ... 506
11.4.5 Restricted Simple Types . . . . . . . .. ... ... .... 507
11.4.6 Keysin XML Schema . . ... ... ... ......... 509
11.4.7 Foreign Keysin XML Schema . . . . .. .. ... ... .. 510
11.4.8 Exercises for Section11.4 . . . . .. ... ... ... ... 512
11.5 Summary of Chapter 11 . . . . . . . .. ... ... ... .. ... 514
11.6 References for Chapter 11 . . . . . . . . . . ... .. ... ..., 515
12 Programming Languages for XML 517
121 XPath . . . . ... e e 517
12.1.1 The XPath Data Model . . . . ... ... ... ...... 518
12.1.2 Document Nodes . . . . . . . ... ... ... ... .... 519
12.1.3 Path Expressions . . . . . . . .. .. ... ... ..... 519
12.1.4 Relative Path Expressions . . . . .. ... ... ...... 521
12.1.5 Attributes in Path Expressions . . . ... ......... 521
1216 Axes . . . . . . . e e e 521
12.1.7 Context of Expressions. . . . . . . . .. ... .. .. ... 522
121.8 Wildcards . . . . . .. .. . . . . e 523
12.1.9 Conditions in Path Expressions . . . .. ... ... .... 523
12.1.10Exercises for Section 12.1 . . . .. . ... ... ... ... 526
122 XQuery . . . . . e e e e 528
1221 XQuery Basics . . ... ... ... oo oo 530
1222 FLWR Expressions . . . . . . . . ... ... ... ..... 530
12.2.3 Replacement of Variables by Their Values . . . . ... .. 534
12.24 Joinsin XQuery . ... ... ... ..o 536
12.2.5 XQuery Comparison Operators . . . .. .. ... ..... 537
12.2.6 Elimination of Duplicates . . . ... ... .. ... .. .. 538
12.2.7 Quantification in XQuery . . . . ... ... ... ... .. 539
12.2.8 Aggregations . . .. .. .. .. ... oo 540
12.2.9 Branching in XQuery Expressions . . .. ......... 540
12.2.100rdering the Result of a Query . . . . . . . ... ... .. 541
12.2.11Exercises for Section 12.2 . . . . .. ... ... ... ... 543
12.3 Extensible Stylesheet Language . . . . . .. ... ... ...... 544
123.1 XSLT Basics . . . . . . . o v v v i e 544
1232 Templates . . . . . . . . . . i e 544
12.3.3 Obtaining Values From XML Data . . . . ... ... ... 545
12.3.4 Recursive Use of Templates . . . . . ... ... ... ... 546
12.3.5 Iterationin XSLT . . ... .. ... .. ... ....... 549
12.3.6 Conditionals in XSLT . ... ... ... .......... 551
12.3.7 Exercises for Section 12.3 . . . ... ... ... ... ... 551

12.4 Summary of Chapter 12 . . . . . . . .. .. ... ... ... ... 553



TABLE OF CONTENTS XXV

12.5 References for Chapter 12 . . . . . . . ... .. ... ... ..., 554
IV Database System Implementation 555
13 Secondary Storage Management 557

13.1 The Memory Hierarchy . ... .. ... .. ... .. ....... 557

13.1.1 The Memory Hierarchy . . ... .............. 557
13.1.2 Transfer of Data Between Levels . . . ... ... ... .. 560
13.1.3 Volatile and Nonvolatile Storage . . ... ....... .. 560
13.1.4 Virtual Memory . . . . . ... ... ... ... 560
13.1.5 Exercises for Section 13.1 . . . . .. ... ... ... ... 561
132 DisKS . . - v« v e e e e e e e e e e 562
13.2.1 Mechanicsof Disks . . . . . ... .. .. ... .. ..... 562
13.2.2 The Disk Controller . . . . . . ... ... ... ...... 564
13.2.3 Disk Access Characteristics . . . . ... ... ....... 564
13.2.4 Exercises for Section 13.2 . . . . .. ... .. .. ... 567
13.3 Accelerating Access to Secondary Storage . . .. .. .. ... .. 568
13.3.1 The I/O Model of Computation . ............. 568
13.3.2 Organizing Data by Cylinders . . . . . ... ... .. ... 569
13.3.3 Using Multiple Disks . . . . . .. ... ... ... ..... 570
13.3.4 Mirroring Disks . . . . . .. ... ... L L 571
13.3.5 Disk Scheduling and the Elevator Algorithm . ... ... 571
13.3.6 Prefetching and Large-Scale Buffering . . .. .. ... .. 573
13.3.7 Exercises for Section 13.3 . . . . . ... ... ... 573
13.4 Disk Failures . .. ... ... ....... e e e e e e e 575
13.4.1 Intermittent Failures . . . . . ... ... ... ....... 576
13.4.2 Checksums . . . . . ... ... ... L. 576
13.4.3 Stable Storage . . . .. ... ... ... oL 577
13.4.4 Error-Handling Capabilities of Stable Storage . . . . . . . 578
13.4.5 Recovery from Disk Crashes . . . . . .. ... .. ... .. 578
13.4.6 Mirroring as a Redundancy Technique . . . . .. ... .. 579
13.4.7 ParityBlocks . . . .. ... .. ... . . oL 580
13.4.8 An Improvement: RAID 5. . . . ... .. ......... 583
13.4.9 Coping With Multiple Disk Crashes . . . ... ... ... 584
13.4.10Exercises for Section 13.4 . . . . . ... ... ... ... 587
13.5 Arranging DataonDisk . . . . .. ... ... ... ... ... .. 590
13.5.1 Fixed-Length Records . . .. .. ... .. ......... 590
13.5.2 Packing Fixed-Length Records into Blocks. . . . . .. .. 592
13.5.3 Exercises for Section 13.5 . . .. .. ... ... ... ... 593
13.6 Representing Block and Record Addresses . . . . .. .. ... .. 593
13.6.1 Addresses in Client-Server Systems . . . . .. .. ... .. 593
13.6.2 Logical and Structured Addresses . . . . . .. ... .. .. 595
13.6.3 Pointer Swizzling . . . . ... ... ... ... .. . ... 596

13.6.4 Returning BlockstoDisk . . ... ... ... ....... 600



xxvi TABLE OF CONTENTS
13.6.5 Pinned Recordsand Blocks . . . .. ... .. ....... 600
13.6.6 Exercises for Section 13.6 . . . ... ... .. .. .. ... 602

13.7 Variable-Length Data and Records . . . . . ... .. ... .... 603
13.7.1 Records With Variable-Length Fields ... ... ... .. 604
13.7.2 Records With Repeating Fields . . . . ... ... .. ... 605
13.7.3 Variable-Format Records . . .. .. ... ... ...... 607
13.7.4 Records That Do Not FitinaBlock ... ......... 608
13.7.5 BLOBs . . .. . .. . . e 608
13.7.6 Column Stores . . . .. .. . . ... ... 609
13.7.7 Exercises for Section 13.7 . . . . . . .. ... ... 610

13.8 Record Modifications . . . . . . . . . . . . ... .. ... 612
13.8.1 Imsertion. . . . . . . . . . . i i e e 612
13.8.2 Deletion . . . . . . . . ... e 614
13.83 Update . . ... .. ... ... .. 615
13.8.4 Exercises for Section 13.8 . . . . .. .. .. ... ... .. 615

13.9 Summary of Chapter 13 . . . . . . . .. ... ... 615

13.10References for Chapter 13 . . . . . .. ... ... ... ... ... 617

14 Index Structures 619

14.1 Index-Structure Basics . . . . . . . . .. ... ... ... ... 620
14.1.1 Sequential Files . . . . . .. .. ... ... ... ...... 621
141.2 DenseIndexes. . . . . . . . . . . .. ... . .. ... 621
14.1.3 SparseIndexes . . ... ... ... ... ... .. ... 622
14.1.4 Multiple Levelsof Index . . . . . .. .. ... .. ... .. 623
14.1.5 SecondaryIndexes . . . .. .. ... .. ... ....... 624
14.1.6 Applications of Secondary Indexes . . .. ... ... ... 625
14.1.7 Indirection in Secondary Indexes . . ... ... ... ... 626
14.1.8 Document Retrieval and Inverted Indexes . . . . . . . .. 628
14.1.9 Exercises for Section 14.1 . . . . .. .. .. .. ... ... 631

14.2 B-Trees . . . . . . o o i e e e e e e e e e 633
14.2.1 The Structureof B-trees . . . . . . . . ... ... ... .. 634
14.2.2 Applications of B-trees . . . . . . ... ... ... .. ... 637
14.2.3 Lookupin B-Trees . . . ... ... . ... ... ...... 639
1424 Range Queries . . . .. ... ... ... ... ... ... 639
14.2.5 Insertion Into B-Trees . . . . . .. ... ... ... .. 640
14.2.6 Deletion From B-Trees . . . . . . . . .. ... .. ... .. 642
14.2.7 Efficiency of B-Trees . . . . . . . . . .. ... ... ... 645
14.2.8 Exercises for Section 14.2 . . . . . . ... ... ... ... 646

143 Hash Tables . . . . . . . . . . . . . . i it e e 648
14.3.1 Secondary-Storage Hash Tables . . . . ... ... ... .. 649
14.3.2 Insertion Into a Hash Table . . . . ... ... .. ..... 649
14.3.3 Hash-Table Deletion . . .. ... ... ... ... ..... 650
14.3.4 Efficiency of Hash Table Indexes . . .. ... ... .. .. 651
14.3.5 Extensible Hash Tables . .. .. ... ... ... ..... 652

14.3.6 Insertion Into Extensible Hash Tables . . ... ... ... 653



TABLE OF CONTENTS xxvii

14.3.7 Linear Hash Tables . . . . . . . .. .. ... ... ..... 655
14.3.8 Insertion Into Linear Hash Tables . .. ... .. ... .. 657
14.3.9 Exercises for Section 14.3 . . . .. . ... ... ... ... 659
14.4 Multidimensional Indexes . . . . . . . . .. ... ... .. 661
14.4.1 Applications of Multidimensional Indexes . . . . .. . .. 661
14.4.2 Executing Range Queries Using Conventional Indexes . . 663
14.4.3 Executing Nearest-Neighbor Queries Using Conventional
Indexes . . . . . . . . . . e 664
14.4.4 Overview of Multidimensional Index Structures . . . . . . 664
14.5 Hash Structures for Multidimensional Data . . . . ... ... .. 665
1451 GridFiles . . . . . . . . o o 665
14.5.2 LookupinaGridFile . . . ... .. .. ... .... ... 666
14.5.3 Insertion Into Grid Files . . . . . . .. ... ... ... .. 667
14.5.4 Performanceof Grid Files . . . .. . ... ... ... .. 669
14.5.5 Partitioned Hash Functions . . . . ... .. ... .. ... 671
14.5.6 Comparison of Grid Files and Partitioned Hashing . . . . 673
14.5.7 Exercises for Section 14.5 . . . . . . ... ... L. 673
14.6 Tree Structures for Multidimensional Data . . . . . .. ... ... 675
14.6.1 Multiple-Key Indexes . . . . . . ... ... ... ..... 675
14.6.2 Performance of Multiple-Key Indexes. . . . . . . ... .. 676
14.6.3 kd-Trees . . . . . . . .« . . o e 677
14.6.4 Operations on kd-Trees . . . . . ... ... ... ..... 679
14.6.5 Adapting kd-Trees to Secondary Storage . . . . . ... .. 681
146.6 Quad Trees . . . . . . . . . o i ittt 681
14.6.7 R-Trees . . . . . . o o v i i e 683
14.6.8 Operationson R-Trees . . . . .. .. ... ... .. .... 684
14.6.9 Exercises for Section 14.6 . . . . . . ... . ... .. ... 686
14.7 Bitmap Indexes . . . . . . . . . ... o 688
14.7.1 Motivation for Bitmap Indexes . . . . . . . ... .. ... 689
14.7.2 Compressed Bitmaps . . . . . . . . . .. ... .. ... .. 691
14.7.3 Operating on Run-Length-Encoded Bit-Vectors . . . . . . 693
14.7.4 Managing Bitmap Indexes . . . . .. .. ... ... .. .. 693
14.7.5 Exercises for Section 14.7 . . . . . . . ... ... ... .. 695
14.8 Summary of Chapter 14 . . . . . . ... ... ... L. 695
14.9 References for Chapter 14 . . . . . . . . . . . . . ... ... ... 697
15 Query Execution 701
15.1 Introduction to Physical-Query-Plan Operators . . . . . ... .. 703
15.1.1 Scanning Tables . ... ... .. ... ... ....... 703
15.1.2 Sorting While Scanning Tables . . . . ... ... .. ... 704
15.1.3 The Computation Model for Physical Operators . . . . . 704
15.1.4 Parameters for Measuring Costs . . . . . . ... ... .. 705
15.1.5 I/O Cost for Scan Operators . . .. ... ......... 706
15.1.6 Iterators for Implementation of Physical Operators . . . . 707
15.2 One-Pass Algorithms . . . . . . . . .. ... ... ... ...... 709



xxviil

15.3

15.4

15.5

15.6

15.7

15.8

TABLE OF CONTENTS

15.2.1 One-Pass Algorithms for Tuple-at-a-Time Operations . . 711
15.2.2 One-Pass Algorithms for Unary, Full-Relation Operations 712

15.2.3 One-Pass Algorithms for Binary Operations . . . . . . .. 715
15.2.4 Exercises for Section 15.2 . . . ... ... ... ... .. 718
Nested-Loop Joins . . . .. .. ... ... ... ... .. ... 718
15.3.1 Tuple-Based Nested-Loop Join . . . . ... ... ..... 719
15.3.2 An Iterator for Tuple-Based Nested-Loop Join . . .. .. 719
15.3.3 Block-Based Nested-Loop Join Algorithm . . .. ... .. 719
15.3.4 Analysis of Nested-Loop Join . . . ... .......... 721
15.3.5 Summary of AlgorithmssoFar . . . ... ... ... ... 722
15.3.6 Exercises for Section 15.3 . . . ... ... ... .. .... 722
Two-Pass Algorithms Based on Sorting . . ... ......... 723
15.4.1 Two-Phase, Multiway Merge-Sort . . . .. ... ... ... 723
15.4.2 Duplicate Elimination Using Sorting . . . . ... ... .. 725
15.4.3 Grouping and Aggregation Using Sorting . . .. ... .. 726
15.4.4 A Sort-Based Union Algorithm . . .. ... ... ..... 726
15.4.5 Sort-Based Intersection and Difference . . . . . . ... .. 727
15.4.6 A Simple Sort-Based Join Algorithm . . . ... ... ... 728
15.4.7 Analysis of Simple Sort-Join . . . . .. ... ... ... 729
15.4.8 A More Efficient Sort-Based Join . . . . . . ... ..... 729
15.4.9 Summary of Sort-Based Algorithms . . . ... ... ... 730
15.4.10Exercises for Section 154 . . . . ... ... ... ... .. 730
Two-Pass Algorithms Based on Hashing . . . . . ... ... ... 732
15.5.1 Partitioning Relations by Hashing . . . . ... ... ... 732
15.5.2 A Hash-Based Algorithm for Duplicate Elimination . . . 732
15.5.3 Hash-Based Grouping and Aggregation . . ... ... .. 733
15.5.4 Hash-Based Union, Intersection, and Difference . . . . . . 734
15.5.5 The Hash-Join Algorithm . . .. ... ... ........ 734
15.5.6 Saving Some Disk I/O’s . . ... ... ... ........ 735
15.5.7 Summary of Hash-Based Algorithms . . . .. .. .. ... 737
15.5.8 Exercises for Section 15.5 . . . . . .. ... ... ... .. 738
Index-Based Algorithms . . .. .. ... ... ........... 739
15.6.1 Clustering and Nonclustering Indexes . . . . .. ... .. 739
15.6.2 Index-Based Selection . . . ... ... ........... 740
15.6.3 Joining by UsinganIndex . . . . ... ... ... .. ... 742
15.6.4 Joins Using a Sorted Index . . . .. .. ... .. ..... 743
15.6.5 Exercises for Section 156 . . . ... ... ... ... ... 745
Buffer Management . . . . . . ... ... .. . L L. 746
15.7.1 Buffer Management Architecture . . . . .. ... ... .. 746
15.7.2 Buffer Management Strategies . ... ... ... ..... 747
15.7.3 The Relationship Between Physical Operator Selection

and Buffer Management . . . . . ... .. ......... 750
15.7.4 Exercises for Section 15.7 . . . . .. ... ... ... ... 751
Algorithms Using More Than Two Passes . . . . . ... ... .. 752

15.8.1 Multipass Sort-Based Algorithms . . . . .. ... ... .. 752



TABLE OF CONTENTS

15.9

15.8.2 Performance of Multipass, Sort-Based Algorithms . . .
15.8.3 Multipass Hash-Based Algorithms . . ... ... ... ..
15.8.4 Performance of Multipass Hash-Based Algorithms . . .
15.8.5 Exercises for Section 15.8 . . . . .. ... ... ... ...
Summary of Chapter 15 . . . . . . ... .. ... ... ......

15.10References for Chapter 15 . . . . . . . . .. .. .. ... .....

16 The Query Compiler

16.1

16.2

16.3

16.4

16.5

16.6

Parsing and Preprocessing . . . . ... ... ... ... ...,
16.1.1 Syntax Analysis and Parse Trees . . . ... ... ... ..
16.1.2 A Grammar for a Simple Subset of SQL . . . . . ... ..
16.1.3 The Preprocessor . . . . . . . . . . . . . i i
16.1.4 Preprocessing Queries Involving Views . . . . .. ... ..
16.1.5 Exercises for Section 16.1 . . . . ... ... ... ... ..
Algebraic Laws for Improving Query Plans . . . . ... ... ..
16.2.1 Commutative and Associative Laws . . ... .. ... ..
16.2.2 Laws Involving Selection . . . . . ... ... ... ... ..
16.2.3 Pushing Selections . . . . .. ... ... .. ... L.
16.2.4 Laws Involving Projection . . . . . .. .. ... ... ...
16.2.5 Laws About Joins and Products . . ... .........
16.2.6 Laws Involving Duplicate Elimination . . ... ... ...
16.2.7 Laws Involving Grouping and Aggregation . . . . . . . ..
16.2.8 Exercises for Section 16.2 . . . . . ... ... .. ... ..
From Parse Trees to Logical Query Plans . . . .. ... ... ..
16.3.1 Conversion to Relational Algebra, . . . . .. ... ... ..
16.3.2 Removing Subqueries From Conditions . . . . .. ... ..
16.3.3 Improving the Logical Query Plan . . . ... .. ... ..
16.3.4 Grouping Associative/Commutative Operators . . . . . .
16.3.5 Exercises for Section 16.3 . . . . .. . ... ... .....
Estimating the Cost of Operations . . . . ... ..........
16.4.1 Estimating Sizes of Intermediate Relatlons ........
16.4.2 Estimating the Size of a Projection . . . . . .. ... ...
16.4.3 Estimating the Size of a Selection . . . . . . ... ... ..
16.4.4 Estimating the Sizeofa Join . . .. ... ... ... ...
16.4.5 Natural Joins With Multiple Join Attributes . .. .. ..
16.4.6 Joins of Many Relations . . . . . .. .. ... .......
16.4.7 Estimating Sizes for Other Operations . . . ... ... ..
16.4.8 Exercises for Section 16.4 . . . . . . ... ... ... ...
Introduction to Cost-Based Plan Selection . . . . ... ... ...
16.5.1 Obtaining Estimates for Size Parameters. . . . . . .. ..
16.5.2 Computation of Statistics . . . ... .. ... .......
16.5.3 Heuristics for Reducing the Cost of Logical Query Plans .
16.5.4 Approaches to Enumerating Physical Plans . . . .. . ..
16.5.5 Exercises for Section 16.5 . . .. ... ... ........
Choosing an Order for Joins . . . . . .. .. ... .........

xxix



XXX TABLE OF CONTENTS
16.6.1 Significance of Left and Right Join Arguments . .. . .. 815
16.6.2 Join Trees . . . . . . . v o v i i i 815
16.6.3 Left-Deep Join Trees . . . . . . . . . .o oo i v v 816
16.6.4 Dynamic Programming to Select a Join Order and Grouping819
16.6.5 Dynamic Programming With More Detailed Cost Functions823
16.6.6 A Greedy Algorithm for Selecting a Join Order . . . . . . 824
16.6.7 Exercises for Section 16.6 . . . . .. ... ... ... ... 825

16.7 Completing the Physical-Query-Plan . . . . .. ... .. .. ... 826
16.7.1 Choosing a Selection Method . . . . ... ... ... ... 827
16.7.2 Choosing a Join Method . . . . . ... ... ... ..... 829
16.7.3 Pipelining Versus Materialization . . . . . .. .. ... .. 830
16.7.4 Pipelining Unary Operations . . . ... .. ... .. ... 830
16.7.5 Pipelining Binary Operations . . . . . ... ... ..... 830
16.7.6 Notation for Physical Query Plans . . . . ... ... ... 834
16.7.7 Ordering of Physical Operations . . .. ... ....... 837
16.7.8 Exercises for Section 16.7 . . . . .. .. .. ... ... .. 838

16.8 Summary of Chapter 16 . . . . ... ... ... ... .. ..... 839

16.9 References for Chapter 16 . . . . . . .. . . ... ... ... ... 841

17 Coping With System Failures 843

17.1 Issues and Models for Resilient Operation . . . .. ... ... .. 843
17.1.1 FailureModes . . . . . . .. . .. .. ... ... 844
17.1.2 More About Transactions . . . . ... ... ... .. ... 845
17.1.3 Correct Execution of Transactions . .. ... .. ... .. 846
17.1.4 The Primitive Operations of Transactions . . . . . .. . . 848
17.1.5 Exercises for Section 17.1 . . . . .. .. .. ... ... .. 851

172 Undo Logging . . . . . . . . . .. . o oo 851
172.1 LogRecords. . . . . . ... .. ... Lo 851
17.2.2 The Undo-Logging Rules . . . .. ... ... ....... 853
17.2.3 Recovery Using Undo Logging . . ... ... ... . ... 855
17.2.4 Checkpointing . .. ... ... ... ... . ... . ... 857
17.2.5 Nonquiescent Checkpointing . . . . . .. ... .. .. ... 858
17.2.6 Exercises for Section 17.2 . . . . .. ... .. ... .. .. 862

173 RedoLogging . . . . . . .. . . i 863
17.3.1 The Redo-LoggingRule . . . ... ... ... ....... 863
17.3.2 Recovery With Redo Logging . . . . .. ... .. ..... 864
17.3.3 CheckpointingaRedoLog. . . . . ... ... .. .. ... 866
17.3.4 Recovery With a Checkpointed RedoLog . . .. ... .. 867
17.3.5 Exercises for Section 17.3 . . . . .. ... ... ... 868

174 Undo/Redo Logging . . . . . . . . . .. .. . 869
17.41 The Undo/RedoRules . . . . . ... .. .......... 870
17.4.2 Recovery With Undo/Redo Logging . .. ... ... ... 870
17.4.3 Checkpointing an Undo/RedoLog . . .. ... ... ... 872
17.4.4 Exercises for Section 17.4 . . . . . . .. ... ... ... 874

17.5 Protecting Against Media Failures . . .. ... .. ... ... .. 875



TABLE OF CONTENTS xXxxi

17.5.1 The Archive. . . . . . . . . . .. . .. ... 875
17.5.2 Nonquiescent Archiving . . . ... ... ... .. ..... 875
17.5.3 Recovery Using an ArchiveandLog . ... ... ... .. 878
17.5.4 Exercises for Section 17.5 . . . . ... ... .. ... ... 879

17.6 Summary of Chapter 17 . . . . . . . . . .. ... ... ... ... 879
17.7 References for Chapter 17 . . . . . . . . . .. ... ... ... .. 881
18 Concurrency Control 883
18.1 Serial and Serializable Schedules . . . ... ... ... ...... 884
18.1.1 Schedules . ... ... ... ... ... ... .. .. ..., 884
18.1.2 Serial Schedules . . . . . . . ... .. ... ... ...... 885
18.1.3 Serializable Schedules . . . . .. .. ... ... ...... 886
18.1.4 The Effect of Transaction Semantics . . .. ... ... .. 887
18.1.5 A Notation for Transactions and Schedules . . . ... .. 889
18.1.6 Exercises for Section 18.1 . . . . ... ... ... ... .. 889

18.2 Conflict-Serializability . . . .. ... ... ... ... ....... 890
182.1 Conflicts . . . . . . . . o o i e 890
18.2.2 Precedence Graphs and a Test for Conflict-Serializability 892
18.2.3 Why the Precedence-Graph Test Works . . . . ... ... 894
18.2.4 Exercises for Section 18.2 . . . . ... ... ... .. ... 895

18.3 Enforcing Serializability by Locks . ... . . . .. .. ... ... .. 897
183.1 Locks . . . v v i i e e e e e e e e e e 898
18.3.2 The Locking Scheduler . . . . . . ... ... ........ 900
18.3.3 Two-PhaseLocking . ... ... .. ... ... ...... 900
18.3.4 Why Two-Phase Locking Works . . ... ... ... ... 901
18.3.5 Exercises for Section 18.3 . . . . .. ... ... ... ... 903

18.4 Locking Systems With Several Lock Modes . . . . ... ... .. 905
18.4.1 Shared and Exclusive Locks . . . . . .. ... ... .... 905
18.4.2 Compatibility Matrices . . . .. .. ... ... ... ... 907
184.3 UpgradingLocks . . . ... ... .. ... ... ...... 908
1844 Update Locks . . . . . ... ... .. ... .. ... .... 909
18.4.5 Increment Locks . . .. .. .. ... ... .. ....... 911
18.4.6 Exercises for Section 184 . . . . .. ... ... ... ... 913

18.5 An Architecture for a Locking Scheduler . . . . . . ... ... .. 915
18.5.1 A Scheduler That Inserts Lock Actions . . ... ... .. 915
185.2 TheLock Table . . . . . . . .. ... ... ......... 918
18.5.3 Exercises for Section 185 . . . . .. ... ... ... ... 921

18.6 Hierarchies of Database Elements . . . . .. ... ... ...... 921
18.6.1 Locks With Multiple Granularity . . . . ... .. ... .. 921
18.6.2 Warning Locks . . . .. .. ... ... ... .. ...... 922
18.6.3 Phantoms and Handling Insertions Correctly . . ... .. 926
18.6.4 Exercises for Section 186 . . . . ... .. ... ... ... 927

18.7 The Tree Protocol . . . .. .. .. . .. . ... ... ....... 927
18.7.1 Motivation for Tree-Based Locking . . . . .. .. ... .. 927

18.7.2 Rules for Access to Tree-Structured Data. . . . . . .. .. 928



xxxii TABLE OF CONTENTS
18.7.3 Why the Tree Protocol Works . . . . .. ... .. .. ... 929
18.7.4 Exercises for Section 18.7 . . . . . ... ... ... ... 932

18.8 Concurrency Control by Timestamps . . . . . . ... ... . ... 933
18.8.1 Timestamps . . . . . . . . v« v v v v i e 934
18.8.2 Physically Unrealizable Behaviors . . . ... .. .. ... 934
18.8.3 Problems With Dirty Data. . . . . ... ... .. .. ... 935
18.8.4 The Rules for Timestamp-Based Scheduling . . . . . . . . 937
18.8.5 Multiversion Timestamps . . . . . ... ... .. .. ... 939
18.8.6 Timestamps Versus Locking . . . . . .. ... .. .. ... 941
18.8.7 Exercises for Section 188 . . . .. . ... ... ... .. 942

18.9 Concurrency Control by Validation . . . . . .. .. ... ..... 942
18.9.1 Architecture of a Validation-Based Scheduler . . . . . .. 942
18.9.2 The Validation Rules. . . . . . ... ............ 943
18.9.3 Comparison of Three Concurrency-Control Mechanisms . 946
18.9.4 Exercises for Section 189 . . .. . ... .. ... ... .. 948

18.10Summary of Chapter 18 . . . . . . . .. .. ... .. . . ... 948

18.11References for Chapter 18 . . . . . . . . . . ... ... ..o 950

19 More About Transaction Management 953

19.1 Serializability and Recoverability . . .. ... ... ... ..... 953
19.1.1 The Dirty-Data Problem. . . . . ... ... ... .. ... 954
19.1.2 Cascading Rollback . . ... ... ... .. ... ..... 955
19.1.3 Recoverable Schedules . . . . ... ... ... ....... 956
19.1.4 Schedules That Avoid Cascading Rollback . . . . . . . .. 957
19.1.5 Managing Rollbacks Using Locking . . . . . ... ... .. 957
19.1.6 Group Commit . . . . . ... ... ... .. ... .. 959
19.1.7 Logical Logging . . . . . . . . .. .« .. o 960
19.1.8 Recovery From LogicalLogs . . . . . .. .. .. ... ... 963
19.1.9 Exercises for Section 19.1 . . .. .. ... ... ... ... 965

19.2 Deadlocks . . . . . . . . L e 966
19.2.1 Deadlock Detection by Timeout . ............. 967
19.2.2 The Waits-For Graph . . . . . ... ... ... ...... 967
19.2.3 Deadlock Prevention by Ordering Elements . . . . . . . . 970
19.2.4 Detecting Deadlocks by Timestamps . . . . ... ... .. 970
19.2.5 Comparison of Deadlock-Management Methods . . . . . . 972
19.2.6 Exercises for Section 19.2 . . . . . . ... ... ... .. 974

19.3 Long-Duration Transactions . . . . . . ... ... .. .. ..... 975
19.3.1 Problems of Long Transactions . . . .. ... ....... 976
19.3.2 Sagas . . . . ... e 978
19.3.3 Compensating Transactions . . . . . .. ... ... .. .. 979
19.3.4 Why Compensating Transactions Work . .. ... .. .. 980
19.3.5 Exercises for Section 19.3 . . . . .. .. .. ... oL 981

19.4 Summary of Chapter 19 . . . . . . . . . .. .. oL 982

19.5 References for Chapter 19 . . . . . . .. .. .. ... ... .... 983



TABLE OF CONTENTS

20 Parallel and Distributed Databases
20.1 Parallel Algorithms on Relations . . .. .........
20.1.1 Models of Parallelism . . . .. ... .......
20.1.2 Tuple-at-a-Time Operations in Parallel. . . . . .
20.1.3 Parallel Algorithms for Full-Relation Operations
20.1.4 Performance of Parallel Algorithms . . . . . . ..
20.1.5 Exercises for Section 20.1 . . ... ... .. ...
20.2 The Map-Reduce Parallelism Framework . . . . . . ...
20.2.1 The Storage Model . . . . . ... ... ... ...
20.2.2 The Map Function . . . . . . ... ... .....
20.2.3 The Reduce Function . ... ... ... .....
20.2.4 Exercises for Section 20.2 . . . . . ... ... ..
20.3 Distributed Databases . . . . .. ... ... .. .....
20.3.1 Distributionof Data . . . . ... ... ... ...
20.3.2 Distributed Transactions. . . . . .. ... .. ..
20.3.3 Data Replication . . . . ... ... ... .....
20.3.4 Exercises for Section 20.3 . . ... ... ... ..
20.4 Distributed Query Processing . . . . .. ... ... ...
20.4.1 The Distributed Join Problem . .. .. ... ..
20.4.2 Semijoin Reductions . . . . .. ... ... ....
20.4.3 Joins of Many Relations . . . . .. ... .. ...
20.4.4 Acyclic Hypergraphs . . . . . ... ... .....
20.4.5 Full Reducers for Acyclic Hypergraphs . . . . . .
20.4.6 Why the Full-Reducer Algorithm Works . . . . .
20.4.7 Exercises for Section 204 . . . . ... ... ...
20.5 Distributed Commit . . ... ... ... ...... ...
20.5.1 Supporting Distributed Atomicity . .. ... ..
20.5.2 Two-Phase Commit . ... .. ... .......
20.5.3 Recovery of Distributed Transactions. . . . . . .
20.5.4 Exercises for Section 20.5 . . .. ... ... ...
20.6 Distributed Locking . . . ... ... ... ........
20.6.1 Centralized Lock Systems . . . . ... ... ...
20.6.2 A Cost Model for Distributed Locking Algorithms
20.6.3 Locking Replicated Elements . . . .. ... ...
20.6.4 Primary-Copy Locking . . . . ... ... .....
20.6.5 Global Locks From Local Locks . . . . . ... ..
20.6.6 Exercises for Section 206 . ... ... ... ...
20.7 Peer-to-Peer Distributed Search . . . .. . . ... .. ..
20.7.1 Peer-to-Peer Networks . . . . .. ... ......
20.7.2 The Distributed-Hashing Problem . ... .. ..
20.7.3 Centralized Solutions for Distributed Hashing . .
20.7.4 Chord Circles . . . . . . . . ... .. ... ...
20.7.5 Links in Chord Circles . . . . .. ... ... ...
20.7.6 Search Using Finger Tables . . . .. .. ... ..
20.7.7 Adding New Nodes . . . . .. .. ... .. ....



XXXiv

20.8
20.9

TABLE OF CONTENTS

20.7.8 When a Peer Leaves the Network . . . . . ... ... ... 1030
20.79 WhenaPeer Fails . ... ... ... ... .. ....... 1030
20.7.10Exercises for Section 20.7 . . .. ... ... ... ... .. 1031
Summary of Chapter 20 . . . . . . . .. ... ... . ... 1031
References for Chapter 20 . . . . . . .. .. ... ... ...... 1033

V  Other Issues in Management of Massive Data 1035

21 Information Integration 1037
21.1 Introduction to Information Integration . . ... ... ... ... 1037
21.1.1 Why Information Integration? . ... ........... 1038
21.1.2 The Heterogeneity Problem . . . . . ... ... ... ... 1040
21.2 Modes of Information Integration . . . . .. .. ... ... .... 1041
21.2.1 Federated Database Systems . . .. ... ......... 1042
21.2.2 Data Warehouses . . . . . .. .. ... ... ... ..., 1043
21.2.3 Mediators . . . . . . . . ... e 1046
21.2.4 Exercises for Section 21.2 . . . ... ... ... .. ... 1048
21.3 Wrappers in Mediator-Based Systems . . . . . . ... ... ... 1049
21.3.1 Templates for Query Patterns . . . . . ... ... ..... 1050
21.3.2 Wrapper Generators . . . . . . . . . .. .ot 1051
2133 Filters . . . . . . .. ... 1052
21.3.4 Other Operations at the Wrapper . . . ... ....... 1053
21.3.5 Exercises for Section 21.3 . . .. ... .. ... .. ... 1054
21.4 Capability-Based Optimization . . ... ... ... ... ..... 1056
21.4.1 The Problem of Limited Source Capabilities . . . . . . . . 1056
21.4.2 A Notation for Describing Source Capabilities . . . . . . . 1057
21.4.3 Capability-Based Query-Plan Selection. . . . .. ... .. 1058
21.4.4 Adding Cost-Based Optimization . . . . . ... ... ... 1060
21.4.5 Exercises for Section 21.4 . . . . ... ... ... . ... 1060
21.5 Optimizing Mediator Queries . . . . . . ... ... ... ..... 1061
21.5.1 Simplified Adornment Notation . . . . . ... .. ... .. 1061
21.5.2 Obtaining Answers for Subgoals . . .. ... ....... 1062
21.5.3 The Chain Algorithm . ... ... ... ... ....... 1063
21.5.4 Incorporating Union Views at the Mediator . . . . . . .. 1067
21.5.5 Exercises for Section 21.5 . . . . .. .. ... .. ... .. 1068
21.6 Local-as-View Mediators . . . . .. .. ... ... ...... ... 1069
21.6.1 Motivation for LAV Mediators . . ... .. ........ 1069
21.6.2 Terminology for LAV Mediation .. ... ......... 1070
21.6.3 Expanding Solutions . . . ... ... ... ... ... .. 1071
21.6.4 Containment of Conjunctive Queries . . . . ... ... .. 1073
21.6.5 Why the Containment-Mapping Test Works . . . . . . .. 1075
21.6.6 Finding Solutions to a Mediator Query. . . . . . ... .. 1076
21.6.7 Why the LMSS Theorem Holds . . . . . .. ... ..... 1077

21.6.8 Exercises for Section 21.6 . . . . .. ... ... ...... 1078



TABLE OF CONTENTS XXXV

21.7 Entity Resolution . . . . . . . .. .. ... ... ... ... ... 1078
21.7.1 Deciding Whether Records Represent a Common Entity . 1079
21.7.2 Merging Similar Records . . . . . . ... ... ... .... 1081
21.7.3 Useful Properties of Similarity and Merge Functions . . . 1082
21.7.4 The R-Swoosh Algorithm for ICAR Records . . . . . . .. 1083
21.7.5 Why R-Swoosh Works . . . . ... ... .. ... ..... 1086
21.7.6 Other Approaches to Entity Resolution . . ... ... .. 1086
21.7.7 Exercises for Section 21.7 . . . . ... ... .. L. 1087

21.8 Summary of Chapter 21 . . . . . .. .. ... ... ... ..... 1089

21.9 References for Chapter 21 . . . . . . . ... ... ... . ..... 1091

22 Data Mining 1093

22.1 Frequent-Itemset Mining . . . . .. . ... ... ... ... ..., 1093
22.1.1 The Market-Basket Model . . . . . . .. ... .. ..... 1094
22.1.2 Basic Definitions . . . . .. ... ... .. . 0oL, 1095
22.1.3 Association Rules. . . . .. .. ... ... ... ...... 1097
22.1.4 The Computation Model for Frequent Itemsets . . . . . . 1098
22.1.5 Exercises for Section 22.1 . . ... ... ... .. ... .. 1099

22.2 Algorithms for Finding Frequent Itemsets . . . .. ... ... .. 1100
22.2.1 The Distribution of Frequent Itemsets . . . ... ... .. 1100
22.2.2 The Naive Algorithm for Finding Frequent Itemsets . . . 1101
22.2.3 The A-Priori Algorithm . . . .. .. .. ... ....... 1102
22.2.4 Implementation of the A-Priori Algorithm . . . . . . ... 1104
22.2.5 Making Better Use of Main Memory . . . ... ... ... 1105
22.2.6 When to Use the PCY Algorithm . . . . . ... ... ... 1106
22.2.7 The Multistage Algorithm . . . . .. ... ... ... ... 1107
22.2.8 Exercises for Section 22.2 . . . ... ... ... ... -, . 1109

22.3 Finding Similar Items . . . . . .. ... ... .. ... ... 1110
22.3.1 The Jaccard Measure of Similarity . . ... ... .. ... 1110
22.3.2 Applications of Jaccard Similarity . ... ......... 1110
22.3.3 Minhashing . . . . ... ... ... . ... .. ... .. .. 1112
22.3.4 Minhashing and Jaccard Distance . .. ... .... ... 1113
22.3.5 Why Minhashing Works . . . .. .. ... ... ...... 1113
22.3.6 Implementing Minhashing . . . . .. ... ... ... ... 1114
22.3.7 Exercises for Section 22.3 . . . . .. .. .. ... L. 1115

22.4 Locality-Sensitive Hashing . . . . ... ... ... ... ... ... 1116
22.4.1 Entity Resolution as an Exampleof LSH . ... ... .. 1117
22.4.2 Locality-Sensitive Hashing of Signatures . . . . . .. . .. 1118
22.4.3 Combining Minhashing and Locality-Sensitive Hashing . . 1121
22.4.4 Exercises for Section 224 . . ... ... . ... ...... 1122

22.5 Clustering of Large-Scale Data . . . ... ... ... ....... 1123
22.5.1 Applications of Clustering . . . . .. ... ......... 1123
22.5.2 Distance Measures . . . . . . . ... .. ... ... .. .. 1125
22.5.3 Agglomerative Clustering . . . ... ... ......... 1128

22.5.4 k-Means Algorithms . . . . ... .. ... ... .. ..., 1130



xxxvi TABLE OF CONTENTS
22.5.5 k-Means for Large-ScaleData . . . . .. ... ....... 1132
22.5.6 Processing a Memory Load of Points . . . . ... ... .. 1133
22.5.7 Exercises for Section 22.5 . . ... ... ... .. ... .. 1136

22.6 Summary of Chapter 22 . . . . ... .. .. ... .. ... ... 1137
22.7 References for Chapter 22 . . . ... .. ... ... ....... 1139
23 Database Systems and the Internet 1141
23.1 The Architecture of a Search Engine . . . . . ... ... ... .. 1141
23.1.1 Components of a Search Engine . . . . . .. ... ... .. 1142
23.1.2 WebCrawlers . . . . . . ... ... ... 1143
23.1.3 Query Processing in Search Engines . . . . ... ... .. 1146
23.14 RankingPages . . ... ... ... . ... ... ...... 1146
23.2 PageRank for Identifying Important Pages . . . . . ... .. ... 1147
23.2.1 The Intuition Behind PageRank . ... ... ....... 1147
23.2.2 Recursive Formulation of PageRank — First Try . . . . . 1148
23.2.3 Spider Trapsand Dead Ends . . . . ... ... ... ... 1150
23.2.4 PageRank Accounting for Spider Traps and Dead Ends . 1153
23.2.5 Exercises for Section 23.2 . . . ... ... ... ... ... 1154
23.3 Topic-Specific PageRank . . . . . .. .. .. ... ... ... 1156
23.3.1 Teleport Sets . . . . . . . .. ... .. 1156
23.3.2 Calculating A Topic-Specific PageRank . . ... ... .. 1158
23.33 LinkSpam . . ... .... ... ... . ... 0. 1159
23.3.4 Topic-Specific PageRank and Link Spam . . . . . ... .. 1160
23.3.5 Exercises for Section 23.3 . . . ... ... ... ... ... 1161
234 Data Streams . . . . . . . . . ... e e 1161
23.4.1 Data-Stream-Management Systems . . . . . ... ... .. 1162
23.4.2 Stream Applications . . . ... ... ... ... ... 1163
23.4.3 A Data-Stream Data Model . . . . . ... .. ... .. .. 1164
23.4.4 Converting Streams Into Relations . . . . .. ... .. .. 1165
23.4.5 Converting Relations Into Streams . . . . . ... .. ... 1166
23.4.6 Exercises for Section 23.4 . . . . ... ... ... ... .. 1168
23.5 Data Mining of Streams . . . . ... . ... ... ... . ..., 1169
23.5.1 Motivation . .. ... ... ... .. ... ... 1169
2352 Counting Bits . . . . . ... ... .. ... ..., 1171
23.5.3 Counting the Number of Distinct Elements . . . ... .. 1175
23.5.4 Exercises for Section 23.5 . . .. .. ... . ... ... .. 1176
23.6 Summary of Chapter 23 . . . .. ... ... ... .. ... ... 1177
23.7 References for Chapter 23 . . . . .. . ... .. .. ... ..... 1179

Index 1183



DATABASE SYSTEMS
The Complete Book



Chapter 1

The Worlds of Database
Systems

Databases today are essential to every business. Whenever you visit a major
Web site — Google, Yahoo!, Amazon.com, or thousands of smaller sites that
provide information — there is a database behind the scenes serving up the
information you request. Corporations maintain all their important records in
databases. Databases are likewise found at the core of many scientific investi-
gations. They represent the data gathered by astronomers, by investigators of
the human genome, and by biochemists exploring properties of proteins, among
many other scientific activities.

The power of databases comes from a body of knowledge and technology
that has developed over several decades and is embodied in specialized soft-
ware called a database management system, or DBMS, or more colloquially a
“database system.” A DBMS is a powerful tool for creating and managing large
amounts of data efficiently and allowing it to persist over long periods of time,
safely. These systems are among the most complex types of software available.
In this book, we shall learn how to design databases, how to write programs
in the various languages associated with a DBMS, and how to implement the
DBMS itself.

1.1 The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of
information that exists over a long period of time, often many years. In common
parlance, the term database refers to a collection of data that is managed by a
DBMS. The DBMS is expected to:

1. Allow users to create new databases and specify their schemas (logical
structure of the data), using a specialized data-definition language.

1



2 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

2. Give users the ability to query the data (a “query” is database lingo for
a question about the data) and modify the data, using an appropriate
language, often called a guery language or data-manipulation language.

3. Support the storage of very large amounts of data — many terabytes or
more — over a long period of time, allowing efficient access to the data
for queries and database modifications.

4. Enable durability, the recovery of the database in the face of failures,
errors of many kinds, or intentional misuse.

5. Control access to data from many users at once, without allowing unex-
pected interactions among users (called isolation) and without actions on
the data to be performed partially but not completely (called atomicity).

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960’s.
These systems evolved from file systems, which provide some of item (3) above;
file systems store data over a long period of time, and they allow the storage of
large amounts of data. However, file systems do not generally guarantee that
data cannot be lost if it is not backed up, and they don’t support efficient access
to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2), a query language for
the data in files. Their support for (1) — a schema for the data — is limited to
the creation of directory structures for files. Item (4) is not always supported
by file systems; you can lose data that has not been backed up. Finally, file
systems do not satisfy (5). While they allow concurrent access to files by several
users or processes, a file system generally will not prevent situations such as
two users modifying the same file at about the same time, so the changes made
by one user fail to appear in the file.

The first important applications of DBMS’s were ones where data was com-
posed of many small items, and many queries or modifications were made.
Examples of these applications are:

1. Banking systems: maintaining accounts and making sure that system
failures do not cause money to disappear.

2. Airline reservation systems: these, like banking systems, require assurance
that data will not bé lost, and they must accept very large volumes of
small actions by customers.

3. Corporate record keeping: employment and tax records, inventories, sales
records, and a great variety of other types of information, much of it
critical.

The early DBMS’s required the programmer to visualize data much as it
was stored. These database systems used several different data models for



1.1. THE EVOLUTION OF DATABASE SYSTEMS 3

describing the structure of the information in a database, chief among them
the “hierarchical” or tree-based model and the graph-based “network” model.
The latter was standardized in the late 1960’s through a report of CODASYL
(Committee on Data Systems and Languages).!

A problem with these early models and systems was that they did not sup-
port high-level query languages. For example, the CODASYL query language
had statements that allowed the user to jump from data element to data ele-
ment, through a graph of pointers among these elements. There was consider-
able effort needed to write such programs, even for very simple queries.

1.1.2 Relational Database Systems

Following a famous paper written by Ted Codd in 1970,2 database systems
changed significantly. Codd proposed that database systems should present
the user with a view of data organized as tables called relations. Behind the
scenes, there might be a complex data structure that allowed rapid response
to a variety of queries. But, unlike the programmers for earlier database sys-
tems, the programmer of a relational system would not be concerned with the
storage structure. Queries could be expressed in a very high-level language,
which greatly increased the efficiency of database programmers. We shall cover
the relational model of database systems throughout most of this book. SQL
(“Structured Query Language”), the most important query language based on
the relational model, is covered extensively.

By 1990, relational database systems were the norm. Yet the database field
continues to evolve, and new issues and approaches to the management of data
surface regularly. Object-oriented features have infilrated the relational model.
Some of the largest databases are organized rather differently from those using
relational methodology. In the balance of this section, we shall consider some
of the modern trends in database systems.

1.1.3 Smaller and Smaller Systems

Originally, DBMS’s were large, expensive software systems running on large
computers. The size was necessary, because to store a gigabyte of data required
a large computer system. Today, hundreds of gigabytes fit on a single disk,
and it is quite feasible to run a DBMS on a personal computer. Thus, database
systems based on the relational model have become available for even very small
machines, and they are beginning to appear as a common tool for computer
applications, much as spreadsheets and word processors did before them.
Another important trend is the use of documents, often tagged using XML
(eXtensible Modeling Language). Large collections of small documents can

LCODASYL Data Base Task Group April 1971 Report, ACM, New York.
2Codd, E. F., “A relational model for large shared data banks,” Comm. ACM, 13:6,
pp. 377-387, 1970.



4 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

serve as a database, and the methods of querying and manipulating them are
different from those used in relational systems.

1.1.4 Bigger and Bigger Systems

On the other hand, a gigabyte is not that much data any more. Corporate
databases routinely store terabytes (10'2 bytes). Yet there are many databases
that store petabytes (101° bytes) of data and serve it all to users. Some impor-
tant examples:

1. Google holds petabytes of data gleaned from its crawl of the Web. This
data is not held in a traditional DBMS, but in specialized structures
optimized for search-engine queries.

2. Satellites send down petabytes of information for storage in specialized
systems.

3. A picture is actually worth way more than a thousand words. You can
store 1000 words in five or six thousand bytes. Storing a picture typi-
cally takes much more space. Repositories such as Flickr store millions
of pictures and support search of those pictures. Even a database like
Amazon’s has millions of pictures of products to serve.

4. And if still pictures consume space, movies consume much more. An hour
of video requires at least a gigabyte. Sites such as YouTube hold hundreds
of thousands, or millions, of movies and make them available easily.

5. Peer-to-peer file-sharing systems use large networks of conventional com-
puters to store and distribute data of various kinds. Although each node
in the network may only store a few hundred gigabytes, together the
database they embody is enormous.

1.1.5 Information Integration

To a great extent, the old problem of building and maintaining databases has
become one of information integration: joining the information contained in
many related databases into a whole. For example, a large company has many
divisions. Each division may have built its own database of products or em-
ployee records independently of other divisions. Perhaps some of these divisions
used to be independent companies, which naturally had their own way of doing
things. These divisions may use different DBMS’s and different structures for
information. They may use different terms to mean the same thing or the same
term to mean different things. To make matters worse, the existence of legacy
applications using each of these databases makes it almost impossible to scrap
them, ever.

As a result, it has become necessary with increasing frequency to build struc-
tures on top of existing databases, with the goal of integrating the information



1.2. OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 5

distributed among them. One popular approach is the creation of date ware-
houses, where information from many legacy databases is copied periodically,
with the appropriate translation, to a central database. Another approach is
the implementation of a mediator, or “middleware,” whose function is to sup-
port an integrated model of the data of the various databases, while translating
between this model and the actual models used by each database.

1.2 Overview of a Database Management
System

In Fig. 1.1 we see an outline of a complete DBMS. Single boxes represent system
components, while double boxes represent in-memory data structures. The solid
lines indicate control and data flow, while dashed lines indicate data flow only.
Since the diagram is complicated, we shall consider the details in several stages.
First, at the top, we suggest that there are two distinct sources of commands
to the DBMS:

1. Conventional users and application programs that ask for data or modify
data.

2. A database administrator: a person or persons responsible for the struc-
ture or schema of the database.

1.2.1 Data-Definition Language Commands

The second kind of command is the simpler to process, and we show its trail
beginning at the upper right side of Fig. 1.1. For example, the database admin-
istrator, or DBA, for a university registrar’s database might decide that there
should be a table or relation with columns for a student, a course the student
has taken, and a grade for that student in that course. The DBA might also
decide that the only allowable grades are A, B, C, D, and F. This structure
and constraint information is all part of the schema of the database. It is
shown in Fig. 1.1 as entered by the DBA, who needs special authority to ex-
ecute schema-altering commands, since these can have profound effects on the
database. These schema-altering data-definition language (DDL) commands
are parsed by a DDL processor and passed to the execution engine, which then
goes through the index/file/record manager to alter the metadata, that is, the
schema information for the database.

1.2.2 Overview of Query Processing

The great majority of interactions with the DBMS follow the path on the left
side of Fig. 1.1. A user or an application program initiates some action, using
the data-manipulation language (DML). This command does not affect the
schema of the database, but may affect the content of the database (if the



CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

L. Database
User/application administrator
queries, transaction g DDL
updates commands commands
Query Transaction DDL
compiler manager compiler
%
query \\metad.atz_z, \ metadata
)
\‘ 1
Execution \ Logging and Concurrency | |
engine \ |  Tecovery control '
ST ) [ !
index, file, and W T .
record requests v X 3 !
\
Y \ lo : '
3 _ LY ¢4 '
Ingex/flle/rec I pages: Lock /
ord manager N X table ,
) data, NN : !
aia,
page metadata,'. . | s
commands indexes N Ao L
LN W A IR
Buffer
manager
[
read/write
pages
Storage
manager
Storage

\_/

Figure 1.1: Database management system components



OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 7

action is a modification command) or will extract data from the database (if the
action is a query). DML statements are handled by two separate subsystems,
as follows.

Answering the Query

The query is parsed and optimized by a query compiler. The resulting guery
plan, or sequence of actions the DBMS will perform to answer the query, is
passed to the ezecution engine. The execution engine issues a sequence of
requests for small pieces of data, typically records or tuples of a relation, to a
resource manager that knows about data files (holding relations), the format
and size of records in those files, and indez files, which help find elements of
data files quickly.

The requests for data are passed to the buffer manager. The buffer man-
ager’s task is to bring appropriate portions of the data from secondary storage
(disk) where it is kept permanently, to the main-memory buffers. Normally, the
page or “disk block” is the unit of transfer between buffers and disk.

The buffer manager communicates with a storage manager to get data from
disk. The storage manager might involve operating-system commands, but
more typically, the DBMS issues commands directly to the disk controller.

Transaction Processing

Queries and other DML actions are grouped into transactions, which are units
that must be executed atomically and in isolation from one another. Any query
or modification action can be a transaction by itself. In addition, the execu-
tion of transactions must be durable, meaning that the effect of any completed
transaction must be preserved even if the system fails in some way right after
completion of the transaction. We divide the transaction processor into two
major parts:

1. A concurrency-control manager, or scheduler, responsible for assuring
atomicity and isolation of transactions, and

2. A logging and recovery manager, responsible for the durability of trans-
actions.

1.2.3 Storage and Buffer Management

The data of a database normally resides in secondary storage; in today’s com-
puter systems “secondary storage” generally means magnetic disk. However, to
perform any useful operation on data, that data must be in main memory. It
is the job of the storage manager to control the placement of data on disk and
its movement between disk and main memory.

In a simple database system, the storage manager might be nothing more
than the file system of the underlying operating system. However, for efficiency



8 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

purposes, DBMS’s normally control storage on the disk directly, at least under
some circumstances. The storage manager keeps track of the location of files
on the disk and obtains the block or blocks containing a file on request from
the buffer manager.

The buffer manager is responsible for partitioning the available main mem-
ory into buffers, which are page-sized regions into which disk blocks can be
transferred. Thus, all DBMS components that need information from the disk
will interact with the buffers and the buffer manager, either directly or through
the execution engine. The kinds of information that various components may
need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con-
straints on, the database.

3. Log Records: information about recent changes to the database; these
support durability of the database.

4. Statistics: information gathered and stored by the DBMS about data
properties such as the sizes of, and values in, various relations or other
components of the database.

5. Indezes: data structures that support efficient access to the data.

1.2.4 Transaction Processing

It is normal to group one or more database operations into a transaction, which
is a unit of work that must be executed atomically and in apparent isolation
from other transactions. In addition, a DBMS offers the guarantee of durability:
that the work of a completed transaction will never be lost. The transaction
manager therefore accepts transaction commands from an application, which
tell the transaction manager when transactions begin and end, as well as infor-
mation about the expectations of the application (some may not wish to require
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is
logged separately on disk. The log manager follows one of several policies
designed to assure that no matter when a system failure or “crash” occurs,
a recovery manager will be able to examine the log of changes and restore
the database to some consistent state. The log manager initially writes
the log in buffers and negotiates with the buffer manager to make sure that
buffers are written to disk (where data can survive a crash) at appropriate
times.

2. Concurrency control: Transactions must appear to execute in isolation.
But in most systems, there will in truth be many transactions executing



OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 9

The ACID Properties of Transactions

Properly implemented transactions are commonly said to meet the “ACID
test,” where:

e “A” stands for “atomicity,” the all-or-nothing execution of trans-
actions.

e “I” stands for “isolation,” the fact that each transaction must appear
to be executed as if no other transaction is executing at the same
time.

e “D” stands for “durability,” the condition that the effect on the
database of a transaction must never be lost, once the transaction
has completed.

The remaining letter, “C,” stands for “consistency.” That s, all databases
have consistency constraints, or expectations about relationships among
data elements (e.g., account balances may not be negative after a trans-
action finishes). Transactions are expected to preserve the consistency of
the database.

at once. Thus, the scheduler (concurrency-control manager) must assure
that the individual actions of multiple transactions are executed in such
an order that the net effect is the same as if the transactions had in
fact executed in their entirety, one-at-a-time. A typical scheduler does
its work by maintaining locks on certain pieces of the database. These
locks prevent two transactions from accessing the same piece of data in
ways that interact badly. Locks are generally stored in a main-memory
lock table, as suggested by Fig. 1.1. The scheduler affects the execution of
queries and other database operations by forbidding the execution engine
from accessing locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the
locks that the scheduler grants, they can get into a situation where none
can proceed because each needs something another transaction has. The
transaction manager has the responsibility to intervene and cancel (“roll-
back” or “abort”) one or more transactions to let the others proceed.

1.2.5 The Query Processor

The portion of the DBMS that most affects the performance that the user sees
is the query processor. In Fig. 1.1 the query processor is represented by two
components:



10 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

1. The query compiler, which translates the query into an internal form called
a query plan. The latter is a sequence of operations to be performed on
the data. Often the operations in a query plan are implementations of
“relational algebra” operations, which are discussed in Section 2.4. The
query compiler consists of three major units:

(a) A query parser, which builds a tree structure from the textual form
of the query.

(b) A guery preprocessor, which performs semantic checks on the query
(e.g., making sure all relations mentioned by the query actually ex-
ist), and performing some tree transformations to turn the parse tree
into a tree of algebraic operators representing the initial query plan.

(c) A guery optimizer, which transforms the initial query plan into the
best available sequence of operations on the actual data.

The query compiler uses metadata and statistics about the data to decide
which sequence of operations is likely to be the fastest. For example, the
existence of an indez, which is a specialized data structure that facilitates
access to data, given values for one or more components of that data, can
make one plan much faster than another.

2. The ezecution engine, which has the responsibility for executing each of
the steps in the chosen query plan. The execution engine interacts with
most of the other components of the DBMS, either directly or through
the buffers. It must get the data from the database into buffers in order
to manipulate that data. It needs to interact with the scheduler to avoid
accessing data that is locked, and with the log manager to make sure that
all database changes are properly logged.

1.3 Outline of Database-System Studies

We divide the study of databases into five parts. This section is an outline of
what to expect in each of these units.

Part I: Relational Database Modeling

The relational model is essential for a study of database systems. After ex-
amining the basic concepts, we delve into the theory of relational databases.
That study includes functional dependencies, a formal way of stating that one
kind of data is uniquely determined by another. It also includes normalization,
the process whereby functional dependencies and other formal dependencies are
used to improve the design of a relational database.

We also consider high-level design notations. These mechanisms include the
Entity-Relationship (E/R) model, Unified Modeling Language (UML), and Ob-
ject Definition Language (ODL). Their purpose is to allow informal exploration
of design issues before we implement the design using a relational DBMS.



1.3. OUTLINE OF DATABASE-SYSTEM STUDIES 11

Part I1: Relational Database Programming

We then take up the matter of how relational databases are queried and modi-
fied. After an introduction to abstract programming languages based on algebra
and logic (Relational Algebra and Datalog, respectively), we turn our atten-
tion to the standard language for relational databases: SQL. We study both
the basics and important special topics, including constraint specifications and
triggers (active database elements), indexes and other structures to enhance
performance, forming SQL into transactions, and security and privacy of data
in SQL.

We also discuss how SQL is used in complete systems. It is typical to
combine SQL with a conventional or host language and to pass data between
the database and the conventional program via SQL calls. We discuss a number
of ways to make this connection, including embedded SQL, Persistent Stored
Modules (PSM), Call-Level Interface (CLI), Java Database Interconnectivity
(JDBC), and PHP.

Part III: Semistructured Data Modeling and Programming

The pervasiveness of the Web has put a premium on the management of hierar-
chically structured data, because the standards for the Web are based on nested,
tagged elements (semistructured date). We introduce XML and its schema-
defining notations: Document Type Definitions (DTD) and XML Schema. We
also examine three query languages for XML: XPATH, XQuery, and Extensible
Stylesheet Language Transform (XSLT).

Part IV: Database System Implementation

We begin with a study of storage management: how disk-based storage can be
organized to allow efficient access to data. We explain the commonly used B-
tree, a balanced tree of disk blocks and other specialized schemes for managing
multidimensional data.

We then turn our attention to query processing. There are two parts to
this study. First, we need to learn query ezecution: the algorithms used to
implement the operations from which queries are built. Since data is typically
on disk, the algorithms are somewhat different from what one would expect
were they to study the same problems but assuming that data were in main
memory. The second step is query compiling. Here, we study how to select an
efficient query plan from among all the possible ways in which a given query
can be executed.

Then, we study transaction processing. There are several threads to follow.
One concerns logging: maintaining reliable records of what the DBMS is doing,
in order to allow recovery in the event of a crash. Another thread is scheduling:
controlling the order of events in transactions to assure the ACID properties.
We also consider how to deal with deadlocks, and the modifications to our algo-
rithms that are needed when a transaction is distributed over many independent



12 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS
sites.

Part V: Modern Database System Issues

In this part, we take up a number of the ways in which database-system tech-
nology is relevant beyond the realm of conventional, relational DBMS’s. We
consider how search engines work, and the specialized data structures that make
their operation possible. We look at information integration, and methodolo-
gies for making databases share their data seamlessly. Data mining is a study
that includes a number of interesting and important algorithms for processing
large amounts of data in complex ways. Data-stream systems deal with data
that arrives at the system continuously, and whose queries are answered contin-
uously and in a timely fashion. Peer-to-peer systems present many challenges
for management of distributed data held by independent hosts.

1.4 References for Chapter 1

Today, on-line searchable bibliographies cover essentially all recent papers con-
cerning database systems. Thus, in this book, we shall not try to be exhaustive
in our citations, but rather shall mention only the papers of historical impor-
tance and major secondary sources or useful surveys. A searchable index of
database research papers was constructed by Michael Ley [5], and has recently
been expanded to include references from many fields. Alf-Christian Achilles
maintains a searchable directory of many indexes relevant to the database field
[3].

While many prototype implementations of database systems contributed to
the technology of the field, two of the most widely known are the System R
project at IBM Almaden Research Center [4] and the INGRES project at Berke-
ley [7]. Each was an early relational system and helped establish this type of
system as the dominant database technology. Many of the research papers that
shaped the database field are found in [6].

The 2003 “Lowell report” [1] is the most recent in a series of reports on
database-system research and directions. It also has references to earlier reports
of this type.

You can find more about the theory of database systems than is covered
here from [2] and [8].

1. S. Abiteboul et al., “The Lowell database research self-assessment,” Comm.
ACM 48:5 (2005), pp. 111-118. http://research.microsoft.com/ gray
/lowell/LowellDatabaseResearchSelfAssessment.htm

2. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-
Wesley, Reading, MA, 1995.

3. http://liinwww.ira.uka.de/bibliography/Database .


http://research.microsoft.com/~gray
http://liinwww.ira.uka.de/bibliography/Database

1.4.

REFERENCES FOR CHAPTER 1 13

. M. M. Astrahan et al., “System R: a relational approach to database

management,” ACM Trans. on Database Systems 1:2, pp. 97-137, 1976.

. http://www.informatik.uni-trier.de/~ley/db/index.html . A mir-

ror site is found at http://www.acm.org/sigmod/dblp/db/index.html .

. M. Stonebraker and J. M. Hellerstein (eds.), Readings in Database Sys-

tems, Morgan-Kaufmann, San Francisco, 1998.

. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and imple-

mentation of INGRES,” ACM Trans. on Database Systems 1:3, pp. 189—
222, 1976.

. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol-

umes I and II, Computer Science Press, New York, 1988, 1989.


http://www.informatik.uni-trier.de/~ley/db/index.html
http://www.acm.org/sigmod/dblp/db/index.html




Part I

Relational Database
Modeling

15






Chapter 2

The Relational Model of
Data

This chapter introduces the most important model of data: the two-dimensional
table, or “relation.” We begin with an overview of data models in general. We
give the basic terminology for relations and show how the model can be used to
represent typical forms of data. We then introduce a portion of the language
SQL — that part used to declare relations and their structure. The chapter
closes with an introduction to relational algebra. We see how this notation
serves as both a query language — the aspect of a data model that enables us
to ask questions about the data — and as a constraint language — the aspect
of a data model that lets us restrict the data in the database in various ways.

2.1 An Overview of Data Models

The notion of a “data model” is one of the most fundamental in the study of
database systems. In this brief summary of the concept, we define some basic
terminology and mention the most important data models.

2.1.1 What is a Data Model?

A data model is a notation for describing data or information. The description
generally consists of three parts:

1. Structure of the data. You may be familiar with tools in programming
languages such as C or Java for describing the structure of the data used by
a program: arrays and structures (“structs”) or objects, for example. The
data structures used to implement data in the computer are sometimes
referred to, in discussions of database systems, as a physical data model,
although in fact they are far removed from the gates and electrons that
truly serve as the physical implementation of the data. In the database

17



18 CHAPTER 2. THE RELATIONAL MODEL OF DATA

world, data models are at a somewhat higher level than data structures,
and are sometimes referred to as a conceptual model to emphasize the
difference in level. We shall see examples shortly.

2. Operations on the data. In programming languages, operations on the
data are generally anything that can be programmed. In database data
models, there is usually a limited set of operations that can be performed.
We are generally allowed to perform a limited set of queries (operations
that retrieve information) and modifications (operations that change the
database). This limitation is not a weakness, but a strength. By limiting
operations, it is possible for programmers to describe database operations
at a very high level, yet have the database management system implement
the operations efficiently. In comparison, it is generally impossible to
optimize programs in conventional languages like C, to the extent that an
inefficient algorithm (e.g., bubblesort) is replaced by a more efficient one
(e.g., quicksort).

3. Constraints on the data. Database data models usually have a way to
describe limitations on what the data can be. These constraints can range
from the simple (e.g., “a day of the week is an integer between 1 and 7”
or “a movie has at most one title”) to some very complex limitations that
we shall discuss in Sections 7.4 and 7.5.

2.1.2 Important Data Models

Today, the two data models of preeminent importance for database systems are:

1. The relational model, including object-relational extensions.

2. The semistructured-data model, including XML and related standards.

The first, which is present in all commercial database management systems,
is the subject of this chapter. The semistructured model, of which XML is
the primary manifestation, is an added feature of most relational DBMS’s, and
appears in a number of other contexts as well. We turn to this data model
starting in Chapter 11.

2.1.3 The Relational Model in Brief

The relational model is based on tables, of which Fig. 2.1 is an example. We
shall discuss this model beginning in Section 2.2. This relation, or table, de-
scribes movies: their title, the year in which they were made, their length in
minutes, and the genre of the movie. We show three particular movies, but you
should imagine that there are many more rows to this table — one row for each
movie ever made, perhaps.

The structure portion of the relational model might appear to resemble an
array of structs in C, where the column headers are the field names, and each



2.1. AN OVERVIEW OF DATA MODELS 19

title | year | length | genre
Gone With the Wind | 1939 | 231 drama
Star Wars 1977 | 124 sciFi
Wayne’s World 1992 | 95 comedy

Figure 2.1: An example relation

of the rows represent the values of one struct in the array. However, it must be
emphasized that this physical implementation is only one possible way the table
could be implemented in physical data structures. In fact, it is not the normal
way to represent relations, and a large portion of the study of database systems
addresses the right ways to implement such tables. Much of the distinction
comes from the scale of relations — they are not normally implemented as
main-memory structures, and their proper physical implementation must take
into account the need to access relations of very large size that are resident on
disk.

The operations normally associated with the relational model form the “re-
lational algebra,” which we discuss beginning in Section 2.4. These operations
are table-oriented. As an example, we can ask for all those rows of a relation
that have a certain value in a certain column. For example, we can ask of the
table in Fig. 2.1 for all the rows where the genre is “comedy.”

The constraint portion of the relational data model will be touched upon
briefly in Section 2.5 and covered in more detail in Chapter 7. However, as a
brief sample of what kinds of constraints are generally used, we could decide
that there is a fixed list of genres for movies, and that the last column of every
row must have a value that is on this list. Or we might decide (incorrectly,
it turns out) that there could never be two movies with the same title, and
constrain the table so that no two rows could have the same string in the first
component.

2.1.4 The Semistructured Model in Brief

Semistructured data resembles trees or graphs, rather than tables or arrays.
The principal manifestation of this viewpoint today is XML, a way to represent
data by hierarchically nested tagged elements. The tags, similar to those used
in HTML, define the role played by different pieces of data, much as the column
headers do in the relational model. For example, the same data as in Fig. 2.1
might appear in an XML “document” as in Fig. 2.2.

The operations on semistructured data usually involve following paths in
the implied tree from an element to one or more of its nested subelements, then
to subelements nested within those, and so on. For example, starting at the
outer <Movies> element (the entire document in Fig. 2.2), we might move to
each of its nested <Movie> elements, each delimited by the tag <Movie> and
matching </Movie> tag, and from each <Movie> element to its nested <Genre>



20 CHAPTER 2. THE RELATIONAL MODEL OF DATA

<Movies>
<Movie title="Gone With the Wind">
<Year>1939</Year>
<Length>231</Length>
<Genre>drama</Genre>
</Movie>
<Movie title="Star Wars">
<Year>1977</Year>
<Length>124</Length>
<Genre>sciFi</Genre>
</Movie>
<Movie title="Wayne’s World">
<Year>1992</Year>
<Length>95</Length>
<Genre>comedy</Genre>
</Movie>
</Movies>

Figure 2.2: Movie data as XML

element, to see which movies belong to the “comedy” genre.

Constraints on the structure of data in this model often involve the data
type of values associated with a tag. For instance, are the values associated
with the <Length> tag integers or can they be arbitrary character strings?
Other constraints determine which tags can appear nested within which other
tags. For example, must each <Movie> element have a <Length> element nested
within it? What other tags, besides those shown in Fig. 2.2 might be used within
a <Movie> element? Can there be more than one genre for a movie? These and
other matters will be taken up in Section 11.2.

2.1.5 Other Data Models

There are many other models that are, or have been, associated with DBMS’s.
A modern trend is to add object-oriented features to the relational model. There
are two effects of object-orientation on relations:

1. Values can have structure, rather than being elementary types such as
integer or strings, as they were in Fig. 2.1.

2. Relations can have associated methods.

In a sense, these extensions, called the object-relational model, are analogous to
the way structs in C were extended to objects in C++. We shall introduce the
object-relational model in Section 10.3.



2.2. BASICS OF THE RELATIONAL MODEL 21

There are even database models of the purely object-oriented kind. In these,
the relation is no longer the principal data-structuring concept, but becomes
only one option among many structures. We discuss an object-oriented database
model in Section 4.9.

There are several other models that were used in some of the earlier DBMS’s,
but that have now fallen out of use. The hierarchical model was, like semistruc-
tured data, a tree-oriented model. Its drawback was that unlike more modern
models, it really operated at the physical level, which made it impossible for
programmers to write code at a conveniently high level. Another such model
was the network model, which was a graph-oriented, physical-level model. In
truth, both the hierarchical model and today’s semistructured models, allow
full graph structures, and do not limit us strictly to trees. However, the gener-
ality of graphs was built directly into the network model, rather than favoring
trees as these other models do.

2.1.6 Comparison of Modeling Approaches

Even from our brief example, it appears that semistructured models have more
flexibility than relations. This difference becomes even more apparent when
we discuss, as we shall, how full graph structures are embedded into tree-like,
semistructured models. Nevertheless, the relational model is still preferred in
DBMS’s, and we should understand why. A brief argument follows.

Because databases are large, efficiency of access to data and efficiency of
modifications to that data are of great importance. Also very important is ease
of use — the productivity of programmers who use the data. Surprisingly, both
goals can be achieved with a model, particularly the relational model, that:

1. Provides a simple, limited approach to structuring data, yet is reasonably
versatile, so anything can be modeled.

2. Provides a limited, yet useful, collection of operations on data.

Together, these limitations turn into features. They allow us to implement
languages, such as SQL, that enable the programmer to express their wishes at
a very high level. A few lines of SQL can do the work of thousands of lines of
C, or hundreds of lines of the code that had to be written to access data under
earlier models such as network or hierarchical. Yet the short SQL programs,
because they use a strongly limited sets of operations, can be optimized to run
as fast, or faster than the code written in alternative languages.

2.2 Basics of the Relational Model

The relational model gives us a single way to represent data: as a two-dimen-
sional table called a relation. Figure 2.1, which we copy here as Fig. 2.3, is an
example of a relation, which we shall call Movies. The rows each represent a



22 CHAPTER 2. THE RELATIONAL MODEL OF DATA

movie, and the columns each represent a property of movies. In this section,
we shall introduce the most important terminology regarding relations, and
illustrate them with the Movies relation.

title | year | length | genre
Gone With the Wind | 1939 | 231 drama
Star Wars 1977 | 124 sciFi
Wayne’s World 1992 | 95 comedy

Figure 2.3: The relation Movies

2.2.1 Attributes

The columns of a relation are named by attributes; in Fig. 2.3 the attributes are
title, year, length, and genre. Attributes appear at the tops of the columns.
Usually, an attribute describes the meaning of entries in the column below. For
instance, the column with attribute length holds the length, in minutes, of
each movie.

2.2.2 Schemas

The name of a relation and the set of attributes for a relation is called the
schema for that relation. We show the schema, for the relation with the relation
name followed by a parenthesized list of its attributes. Thus, the schema for
relation Movies of Fig. 2.3 is

Movies(title, year, length, genre)

The attributes in a relation schema are a set, not a list. However, in order to
talk about relations we often must specify a “standard” order for the attributes.
Thus, whenever we introduce a relation schema with a list of attributes, as
above, we shall take this ordering to be the standard order whenever we display
the relation or any of its rows.

In the relational model, a database consists of one or more relations. The
set of schemas for the relations of a database is called a relational database
schema, or just a database schema.

2.2.3 Tuples

The rows of a relation, other than the header row containing the attribute
names, are called tuples. A tuple has one component for each attribute of
the relation. For instance, the first of the three tuples in Fig. 2.3 has the
four components Gone With the Wind, 1939, 231, and drama for attributes
title, year, length, and genre, respectively. When we wish to write a tuple



2.2. BASICS OF THE RELATIONAL MODEL 23

Conventions for Relations and Attributes

We shall generally follow the convention that relation names begin with a
capital letter, and attribute names begin with a lower-case letter. However,
later in this book we shall talk of relations in the abstract, where the names
of attributes do not matter. In that case, we shall use single capital letters
for both relations and attributes, e.g., R(A, B,C) for a generic relation
with three attributes.

in isolation, not as part of a relation, we normally use commas to separate
components, and we use parentheses to surround the tuple. For example,

(Gone With the Wind, 1939, 231, drama)

is the first tuple of Fig. 2.3. Notice that when a tuple appears in isolation, the
attributes do not appear, so some indication of the relation to which the tuple
belongs must be given. We shall always use the order in which the attributes
were listed in the relation schema.

2.2.4 Domains

The relational model requires that each component of each tuple be atomic;
that is, it must be of some elementary type such as integer or string. It is not
permitted for a value to be a record structure, set, list, array, or any other type
that reasonably can have its values broken into smaller components.

It is further assumed that associated with each attribute of a relation is a
domain, that is, a particular elementary type. The components of any tuple of
the relation must have, in each component, a value that belongs to the domain of
the corresponding column. For example, tuples of the Movies relation of Fig. 2.3
must have a first component that is a string, second and third components that
are integers, and a fourth component whose value is a string.

It is possible to include the domain, or data type, for each attribute in
a relation schema. We shall do so by appending a colon and a type after
attributes. For example, we could represent the schema for the Movies relation
as:

Movies(title:string, year:integer, length:integer, genre:string)

2.2.5 Equivalent Representations of a Relation

Relations are sets of tuples, not lists of tuples. Thus the order in which the
tuples of a relation are presented is immaterial. For example, we can list the
three tuples of Fig. 2.3 in any of their six possible orders, and the relation is
“the same” as Fig. 2.3.



24 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Moreover, we can reorder the attributes of the relation as we choose, without
changing the relation. However, when we reorder the relation schema, we must
be careful to remember that the attributes are column headers. Thus, when we
change the order of the attributes, we also change the order of their columns.
When the columns move, the components of tuples change their order as well.
The result is that each tuple has its components permuted in the same way as
the attributes are permuted.

For example, Fig. 2.4 shows one of the many relations that could be obtained
from Fig. 2.3 by permuting rows and columns. These two relations are consid-
ered “the same.” More precisely, these two tables are different presentations of
the same relation.

year | genre | title | length
1977 | sciFi Star Wars 124
1992 | comedy | Wayne’s World 95

1939 | drama Gone With the Wind | 231

Figure 2.4: Another presentation of the relation Movies

2.2.6 Relation Instances

A relation about movies is not static; rather, relations change over time. We
expect to insert tuples for new movies, as these appear. We also expect changes
to existing tuples if we get revised or corrected information about a movie, and
perhaps deletion of tuples for movies that are expelled from the database for
some reason.

It is less common for the schema of a relation to change. However, there are
situations where we might want to add or delete attributes. Schema changes,
while possible in commercial database systems, can be very expensive, because
each of perhaps millions of tuples needs to be rewritten to add or delete com-
ponents. Also, if we add an attribute, it may be difficult or even impossible to
generate appropriate values for the new component in the existing tuples.

We shall call a set of tuples for a given relation an énstance of that relation.
For example, the three tuples shown in Fig. 2.3 form an instance of relation
Movies. Presumably, the relation Movies has changed over time and will con-
tinue to change over time. For instance, in 1990, Movies did not contain the
tuple for Wayne’s World. However, a conventional database system maintains
only one version of any relation: the set of tuples that are in the relation “now.”
This instance of the relation is called the current instance.!

1Databases that maintain historical versions of data as it existed in past times are called
temporal databases.



2.2. BASICS OF THE RELATIONAL MODEL 25

2.2.7 Keys of Relations

There are many constraints on relations that the relational model allows us to
place on database schemas. We shall defer much of the discussion of constraints
until Chapter 7. However, one kind of constraint is so fundamental that we shall
introduce it here: key constraints. A set of attributes forms a key for a relation
if we do not allow two tuples in a relation instance to have the same values in
all the attributes of the key.

Example 2.1: We can declare that the relation Movies has a key consisting
of the two attributes title and year. That is, we don’t believe there could
ever be two movies that had both the same title and the same year. Notice
that title by itself does not form a key, since sometimes “remakes” of a movie
appear. For example, there are three movies named King Kong, each made in
a different year. It should also be obvious that year by itself is not a key, since
there are usually many movies made in the same year. O

We indicate the attribute or attributes that form a key for a relation by
underlining the key attribute(s). For instance, the Movies relation could have
its schema written as:

Movies(title, year, length, genre)

Remember that the statement that a set of attributes forms a key for a
relation is a statement about all possible instances of the relation, not a state-
ment about a single instance. For example, looking only at the tiny relation of
Fig. 2.3, we might imagine that genre by itself forms a key, since we do not see
two tuples that agree on the value of their genre components. However, we can
easily imagine that if the relation instance contained more movies, there would
be many dramas, many comedies, and so on. Thus, there would be distinct
tuples that agreed on the genre component. As a consequence, it would be
incorrect to assert that genre is a key for the relation Movies.

While we might be sure that title and year can serve as a key for Movies,
many real-world databases use artificial keys, doubting that it is safe to make
any assumption about the values of attributes outside their control. For ex-
ample, companies generally assign employee ID’s to all employees, and these
ID’s are carefully chosen to be unique numbers. One purpose of these ID’s is
to make sure that in the company database each employee can be distinguished
from all others, even if there are several employees with the same name. Thus,
the employee-ID attribute can serve as a key for a relation about employees.

In US corporations, it is normal for every employee to have a Social-Security
number. If the database has an attribute that is the Social-Security number,
then this attribute can also serve as a key for employees. Note that there is
nothing wrong with there being several choices of key, as there would be for
employees having both employee ID’s and Social-Security numbers.

The idea of creating an attribute whose purpose is to serve as a key is quite
widespread. In addition to employee ID’s, we find student ID’s to distinguish



26 CHAPTER 2. THE RELATIONAL MODEL OF DATA

students in a university. We find drivers’ license numbers and automobile reg-
istration numbers to distinguish drivers and automobiles, respectively. You
undoubtedly can find more examples of attributes created for the primary pur-
pose of serving as keys.

Movies(
title:string,
year:integer,
length:integer,
genre:string,
studioName:string,
producerC#:integer

)

MovieStar (
name:string,
address:string,
gender:char,
birthdate:date

)

StarsIn(
movieTitle:string,
movieYear:integer,
starName:string

)

MovieExec(
name:string,
address:string,
cert#:integer,
netWorth:integer

)

Studio(
name:string,
address:string,
presC#:integer

)

Figure 2.5: Example database schema about movies

2.2.8 An Example Database Schema

We shall close this section with an example of a complete database schema.
The topic is movies, and it builds on the relation Movies that has appeared so
far in examples. The database schema is shown in Fig. 2.5. Here are the things
we need to know to understand the intention of this schema.



2.2. BASICS OF THE RELATIONAL MODEL 27

Movies

This relation is an extension of the example relation we have been discussing
so far. Remember that its key is title and year together. We have added
two new attributes; studioName tells us the studio that owns the movie, and
producerC# is an integer that represents the producer of the movie in a way
that we shall discuss when we talk about the relation MovieExec below.

MovieStar

This relation tells us something about stars. The key is name, the name of the
movie star. It is not usual to assume names of persons are unique and therefore
suitable as a key. However, movie stars are different; one would never take a
name that some other movie star had used. Thus, we shall use the convenient
fiction that movie-star names are unique. A more conventional approach would
be to invent a serial number of some sort, like social-security numbers, so that
we could assign each individual a unique number and use that attribute as the
key. We take that approach for movie executives, as we shall see. Another
interesting point about the MovieStar relation is that we see two new data
types. The gender can be a single character, M or F. Also, birthdate is of type
“date,” which might be a character string of a special form.

StarsIn

This relation connects movies to the stars of that movie, and likewise connects a
star to the movies in which they appeared. Notice that movies are represented
by the key for Movies — the title and year — although we have chosen differ-
ent attribute names to emphasize that attributes movieTitle and movieYear
represent the movie. Likewise, stars are represented by the key for MovieStar,
with the attribute called starName. Finally, notice that all three attributes
are necessary to form a key. It is perfectly reasonable to suppose that relation
StarsIn could have two distinct tuples that agree in any two of the three at-
tributes. For instance, a star might appear in two movies in one year, giving
rise to two tuples that agreed in movieYear and starName, but disagreed in
movieTitle.

MovieExec

This relation tells us about movie executives. It contains their name, address,
and networth as data about the executive. However, for a key we have invented
“certificate numbers” for all movie executives, including producers (as appear
in the relation Movies) and studio presidents (as appear in the relation Studio,
below). These are integers; a different one is assigned to each executive.



28 CHAPTER 2. THE RELATIONAL MODEL OF DATA

acctNo | type | balance
12345 | savings 12000
23456 | checking | 1000
34567 | savings 25

The relation Accounts

firstName | lastName | idNo | account
Robbie Banks 901-222 | 12345
Lena Hand 805-333 | 12345
Lena Hand 805-333 | 23456

The relation Customers

Figure 2.6: Two relations of a banking database

Studio

This relation tells about movie studios. We rely on no two studios having the
same name, and therefore use name as the key. The other attributes are the
address of the studio and the certificate number for the president of the studio.
We assume that the studio president is surely a movie executive and therefore
appears in MovieExec.

2.2.9 Exercises for Section 2.2

Exercise 2.2.1: In Fig. 2.6 are instances of two relations that might constitute
part of a banking database. Indicate the following:

a) The attributes of each relation.

b) The tuples of each relation.

¢) The components of one tuple from each relation.
d) The relation schema for each relation.

e) The database schema.

f) A suitable domain for each attribute.

g) Another equivalent way to present each relation.



~—

2.3. DEFINING A RELATION SCHEMA IN SQL 29

Exercise 2.2.2: In Section 2.2.7 we suggested that there are many examples
of attributes that are created for the purpose of serving as keys of relations.
Give some additional examples.

1! Exercise 2.2.3: How many different ways (considering orders of tuples and

attributes) are there to represent a relation instance if that instance has:

a) Three attributes and three tuples, like the relation Accounts of Fig. 2.67
b) Four attributes and five tuples?

¢) n attributes and m tuples?

2.3 Defining a Relation Schema in SQL

SQL (pronounced “sequel”) is the principal language used to describe and ma-
nipulate relational databases. There is a current standard for SQL, called SQL-
99. Most commercial database management systems implement something sim-
ilar, but not identical to, the standard. There are two aspects to SQL:

1. The Data-Definition sublanguage for declaring database schemas and

2. The Datae-Manipulation sublanguage for querying (asking questions a-
bout) databases and for modifying the database.

The distinction between these two sublanguages is found in most languages;
e.g., C or Java have portions that declare data and other portions that are
executable code. These correspond to data-definition and data-manipulation,
respectively.

In this section we shall begin a discussion of the data-definition portion
of SQL. There is more on the subject in Chapter 7, especially the matter of
constraints on data. The data-manipulation portion is covered extensively in
Chapter 6.

2.3.1 Relations in SQL

SQL makes a distinction between three kinds of relations:

1. Stored relations, which are called tables. These are the kind of relation
we deal with ordinarily — a relation that exists in the database and that
can be modified by changing its tuples, as well as queried.

2. Views, which are relations defined by a computation. These relations are
not stored, but are constructed, in whole or in part, when needed. They
are the subject of Section 8.1.



30 CHAPTER 2. THE RELATIONAL MODEL OF DATA

3. Temporary tables, which are constructed by the SQL language processor
when it performs its job of executing queries and data modifications.
These relations are then thrown away and not stored.

In this section, we shall learn how to declare tables. We do not treat the dec-
laration and definition of views here, and temporary tables are never declared.
The SQL CREATE TABLE statement declares the schema for a stored relation. It
gives a name for the table, its attributes, and their data types. It also allows
us to declare a key, or even several keys, for a relation. There are many other
features to the CREATE TABLE statement, including many forms of constraints
that can be declared, and the declaration of indezes (data structures that speed
up many operations on the table) but we shall leave those for the appropriate
time.

2.3.2 Data Types

To begin, let us introduce the primitive data types that are supported by SQL
systems. All attributes must have a data type.

1. Character strings of fixed or varying length. The type CHAR(n) denotes
a fixed-length string of up to n characters. VARCHAR(n) also denotes a
string of up to n characters. The difference is implementation-dependent;
typically CHAR implies that short strings are padded to make n characters,
while VARCHAR implies that an endmarker or string-length is used. SQL
permits reasonable coercions between values of character-string types.
Normally, a string is padded by trailing blanks if it becomes the value
of a component that is a fixed-length string of greater length. For ex-
ample, the string ’foo? 2 if it became the value of a component for an
attribute of type CHAR(5), would assume the value ’foo °’ (with two
blanks following the second o).

2. Bit strings of fixed or varying length. These strings are analogous to fixed
and varying-length character strings, but their values are strings of bits
rather than characters. The type BIT(n) denotes bit strings of length n,
while BIT VARYING(n) denotes bit strings of length up to n.

3. The type BOOLEAN denotes an attribute whose value is logical. The possi-
ble values of such an attribute are TRUE, FALSE, and — although it would
surprise George Boole — UNKNOWN.

4. The type INT or INTEGER (these names are synonyms) denotes typical
integer values. The type SHORTINT also denotes integers, but the number
of bits permitted may be less, depending on the implementation (as with
the types int and short int in C).

2Notice that in SQL, strings are surrounded by single-quotes, not double-quotes as in many
other programming languages.



2.3. DEFINING A RELATION SCHEMA IN SQL 31

Dates and Times in SQL

Different SQL implementations may provide many different representa-
tions for dates and times, but the following is the SQL standard repre-
sentation. A date value is the keyword DATE followed by a quoted string
of a special form. For example, DATE ’1948-05-14’ follows the required
form. The first four characters are digits representing the year. Then come
a hyphen and two digits representing the month. Finally there is another
hyphen and two digits representing the day. Note that single-digit months
and days are padded with a leading 0.

A time value is the keyword TIME and a quoted string. This string has
two digits for the hour, on the military (24-hour) clock. Then come a colon,
two digits for the minute, another colon, and two digits for the second. If
fractions of a second are desired, we may continue with a decimal point and
as many significant digits as we like. For instance, TIME ’15:00:02.5’
represents the time at which all students will have left a class that ends
at 3 PM: two and a half seconds past three o’clock.

5. Floating-point numbers can be represented in a variety of ways. We may
use the type FLOAT or REAL (these are synonyms) for typical floating-
point numbers. A higher precision can be obtained with the type DOUBLE
PRECISIDN; again the distinction between these types is as in C. SQL also
has types that are real numbers with a fixed decimal point. For exam-
ple, DECIMAL(n,d) allows values that consist of n decimal digits, with the
decimal point assumed to be d positions from the right. Thus, 0123.45
is a possible value of type DECIMAL(6,2). NUMERIC is almost a synonym
for DECIMAL, although there are possible implementation-dependent dif-
ferences.

6. Dates and times can be represented by the data types DATE and TIME,
respectively (see the box on “Dates and Times in SQL”). These values
are essentially character strings of a special form. We may, in fact, coerce
dates and times to string types, and we may do the reverse if the string
“makes sense” as a date or time.

2.3.3 Simple Table Declarations

The simplest form of declaration of a relation schema consists of the key-
words CREATE TABLE followed by the name of the relation and a parenthesized,
comma-separated list of the attribute names and their types.

Example 2.2: The relation Movies with the schema given in Fig. 2.5 can be
declared as in Fig. 2.7. The title is declared as a string of (up to) 100 characters.



32 CHAPTER 2. THE RELATIONAL MODEL OF DATA

CREATE TABLE Movies (

title CHAR(100),
year INT,
length INT,

genre CHAR(10),

studioName CHAR(30),
producerC# INT
)5

Figure 2.7: SQL declaration of the table Movies

The year and length attributes are each integers, and the genre is a string of
(up to) 10 characters. The decision to allow up to 100 characters for a title
is arbitrary, but we don’t want to limit the lengths of titles too strongly, or
long titles would be truncated to fit. We have assumed that 10 characters are
enough to represent a genre of movie; again, that is an arbitrary choice, one
we could regret if we had a genre with a long name. Likewise, we have chosen
30 characters as sufficient for the studio name. The certificate number for the
producer of the movie is another integer. O

Example 2.3: Figure 2.8 is a SQL declaration of the relation MovieStar from
Fig. 2.5. It illustrates some new options for data types. The name of this table
is MovieStar, and it has four attributes. The first two attributes, name and
address, have each been declared to be character strings. However, with the
name, we have made the decision to use a fixed-length string of 30 characters,
padding a name out with blanks at the end if necessary and truncating a name
to 30 characters if it is longer. In contrast, we have declared addresses to be
variable-length character strings of up to 255 characters.® It is not clear that
these two choices are the best possible, but we use them to illustrate the two
major kinds of string data types.

CREATE TABLE MovieStar (
name CHAR(30),
address  VARCHAR(255),
gender CHAR(1),
birthdate DATE

)

Figure 2.8: Declaring the relation schema for the MovieStar relation

3The number 255 is not the result of some weird notion of what typical addresses look like.
A single byte can store integers between 0 and 255, so it is possible to represent a varying-
length character string of up to 255 bytes by a single byte for the count of characters plus the
bytes to store the string itself. Commercial systems generally support longer varying-length
strings, however.



2.3. DEFINING A RELATION SCHEMA IN SQL 33

The gender attribute has values that are a single letter, M or F. Thus, we
can safely use a single character as the type of this attribute. Finally, the
birthdate attribute naturally deserves the data type DATE. O

2.3.4 Modifying Relation Schemas

We now know how to declare a table. But what if we need to change the schema
of the table after it has been in use for a long time and has many tuples in its
current instance? We can remove the entire table, including all of its current
tuples, or we could change the schema by adding or deleting attributes.

We can delete a relation R by the SQL statement:

DROP TABLE R;

Relation R is no longer part of the database schema, and we can no longer
access any of its tuples.

More frequently than we would drop a relation that is part of a long-lived
database, we may need to modify the schema of an existing relation. These
modifications are done by a statement that begins with the keywords ALTER
TABLE and the name of the relation. We then have several options, the most
important of which are

1. ADD followed by an attribute name and its data type.

2. DROP followed by an attribute name.

Example 2.4: Thus, for instance, we could modify the MovieStar relation by
adding an attribute phone with:

ALTER TABLE MovieStar ADD phone CHAR(16);

As a result, the MovieStar schema now has five attributes: the four mentioned
in Fig. 2.8 and the attribute phone, which is a fixed-length string of 16 bytes.
In the actual relation, tuples would all have components for phone, but we
know of no phone numbers to put there. Thus, the value of each of these
components is set to the special null value, NULL. In Section 2.3.5, we shall see
how it is possible to choose another “defauit” value to be used instead of NULL
for unknown values.
As another example, the ALTER TABLE statement:

ALTER TABLE MovieStar DROP birthdate;
deletes the birthdate attribute. As a result, the schema for MovieStar no

longer has that attribute, and all tuples of the current MovieStar instance
have the component for birthdate deleted. O



34 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.3.5 Default Values

When we create or modify tuples, we sometimes do not have values for all
components. For instance, we mentioned in Example 2.4 that when we add a
column to a relation schema, the existing tuples do not have a known value, and
it was suggested that NULL could be used in place of a “real” value. However,
there are times when we would prefer to use another choice of default value, the
value that appears in a column if no other value is known.

In general, any place we declare an attribute and its data type, we may add
the keyword DEFAULT and an appropriate value. That value is either NULL or
a constant. Certain other values that are provided by the system, such as the
current time, may also be options.

Example 2.5: Let us consider Example 2.3. We might wish to use the char-
acter 7 as the default for an unknown gender, and we might also wish to use
the earliest possible date, DATE ’0000-00-00° for an unknown birthdate. We
could replace the declarations of gender and birthdate in Fig. 2.8 by:

gender CHAR(1) DEFAULT ’7’,
birthdate DATE DEFAULT DATE ’0000-00-00°

As another example, we could have declared the default value for new at-
tribute phone to be ’unlisted’ when we added this attribute in Example 2.4.
In that case,

ALTER TABLE MovieStar ADD phone CHAR(16) DEFAULT ’unlisted’;

would be the appropriate ALTER TABLE statement. 0O

2.3.6 Declaring Keys

There are two ways to declare an attribute or set of attributes to be a key in
the CREATE TABLE statement that defines a stored relation.

1. We may declare one attribute to be a key when that attribute is listed in
the relation schema.

2. We may add to the list of items declared in the schema (which so far
have only been attributes) an additional declaration that says a particular
attribute or set of attributes forms the key.

If the key consists of more than one attribute, we have to use method (2). If
the key is a single attribute, either method may be used.
There are two declarations that may be used to indicate keyness:

a) PRIMARY KEY, or

b) UNIQUE.



2.3. DEFINING A RELATION SCHEMA IN SQL 35

The effect of declaring a set of attributes S to be a key for relation R either
using PRIMARY KEY or UNIQUE is the following:

e Two tuples in R cannot agree on all of the attributes in set S, unless one
of them is NULL. Any attempt to insert or update a tuple that violates
this rule causes the DBMS to reject the action that caused the violation.

In addition, if PRIMARY KEY is used, then attributes in S are not allowed to
have NULL as a value for their components. Again, any attempt to violate this
rule is rejected by the system. NULL is permitted if the set S is declared UNIQUE,
however. A DBMS may make other distinctions between the two terms, if it
wishes.

Example 2.6: Let us reconsider the schema for relation MovieStar. Since no
star would use the name of another star, we shall assume that name by itself
forms a key for this relation. Thus, we can add this fact to the line declaring
name. Figure 2.9 is a revision of Fig. 2.8 that reflects this change. We could
also substitute UNIQUE for PRIMARY KEY in this declaration. If we did so, then
two or more tuples could have NULL as the value of name, but there could be no
other duplicate values for this attribute.

CREATE TABLE MovieStar (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
birthdate DATE

Figure 2.9: Making name the key

Alternatively, we can use a separate definition of the key. The resulting
schema, declaration would look like Fig. 2.10. Again, UNIQUE could replace
PRIMARY KEY. 0O

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
birthdate DATE,
PRIMARY KEY (name)

Figure 2.10: A separate declaration of the key



36 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Example 2.7: In Example 2.6, the form of either Fig. 2.9 or Fig. 2.10 is
acceptable, because the key is a single attribute. However, in a situation where
the key has more than one attribute, we must use the style of Fig. 2.10. For
instance, the relation Movie, whose key is the pair of attributes title and year,
must be declared as in Fig. 2.11. However, as usual, UNIQUE is an option to
replace PRIMARY KEY. O

CREATE TABLE Movies (

title CHAR(100),
year INT,
length INT,

genre CHAR(10),

studioName CHAR(30),
producerC# INT,
PRIMARY KEY (title, year)

Figure 2.11: Making title and year be the key of Movies

2.3.7 Exercises for Section 2.3

Exercise 2.3.1: In this exercise we introduce one of our running examples of
a relational database schema. The database schema consists of four relations,
whose schemas are:

Product(maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

The Product relation gives the manufacturer, model number and type (PC,
laptop, or printer) of various products. We assume for convenience that model
numbers are unique over all manufacturers and product types; that assumption
is not realistic, and a real database would include a code for the manufacturer
as part of the model number. The PC relation gives for each model number
that is a PC the speed (of the processor, in gigahertz), the amount of RAM (in
megabytes), the size of the hard disk (in gigabytes), and the price. The Laptop
relation is similar, except that the screen size (in inches) is also included. The
Printer relation records for each printer model whether the printer produces
color output (true, if so), the process type (laser or ink-jet, typically), and the
price.
Write the following declarations:

a) A suitable schema for relation Product.



2.3. DEFINING A RELATION SCHEMA IN SQL 37

b) A suitable schema for relation PC.
c¢) A suitable schema for relation Laptop.
d) A suitable schema for relation Printer.

e) An alteration to your Printer schema from (d) to delete the attribute
color.

f) An alteration to your Laptop schema from (c) to add the attribute od
(optical-disk type, e.g., cd or dvd). Let the default value for this attribute
be 'none’ if the laptop does not have an optical disk.

Exercise 2.3.2: This exercise introduces another running example, concerning
World War II capital ships. It involves the following relations:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes(ship, battle, result)

Ships are built in “classes” from the same design, and the class is usually named
for the first ship of that class. The relation Classes records the name of the
class, the type (?bb’ for battleship or ’be?’ for battlecruiser), the country that
built the ship, the number of main guns, the bore (diameter of the gun barrel,
in inches) of the main guns, and the displacement (weight, in tons). Relation
Ships records the name of the ship, the name of its class, and the year in which
the ship was launched. Relation Battles gives the name and date of battles
involving these ships, and relation Dutcomes gives the result (sunk, damaged,
or ok) for each ship in each battle.
Write the following declarations:

a) A suitable schema for relation Classes.
b) A suitable schema for relation Ships.

¢) A suitable schema for relation Battles.
d) A suitable schema for relation Outcomes.

e) An alteration to your Classes relation from (a) to delete the attribute
bore.

f) An alteration to your Ships relation from (b) to include the attribute
yard giving the shipyard where the ship was built.



38 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.4 An Algebraic Query Language

In this section, we introduce the data-manipulation aspect of the relational
model. Recall that a data model is not just structure; it needs a way to query
the data and to modify the data. To begin our study of operations on relations,
we shall learn about a special algebra, called relational algebra, that consists of
some simple but powerful ways to construct new relations from given relations.
When the given relations are stored data, then the constructed relations can be
answers to queries about this data.

Relational algebra is not used today as a query language in commercial
DBMS'’s, although some of the early prototypes did use this algebra directly.
Rather, the “real” query language, SQL, incorporates relational algebra at its
center, and many SQL programs are really “syntactically sugared” expressions
of relational algebra. Further, when a DBMS processes queries, the first thing
that happens to a SQL query is that it gets translated into relational algebra
or a very similar internal representation. Thus, there are several good reasons
to start out learning this algebra.

2.4.1 Why Do We Need a Special Query Language?

Before introducing the operations of relational algebra, one should ask why, or
whether, we need a new kind of programming languages for databases. Won’t
conventional languages like C or Java suffice to ask and answer any computable
question about relations? After all, we can represent a tuple of a relation by a
struct (in C) or an object (in Java), and we can represent relations by arrays
of these elements.

The surprising answer is that relational algebra is useful because it is less
powerful than C or Java. That is, there are computations one can perform in
any conventional language that one cannot perform in relational algebra. An
example is: determine whether the number of tuples in a relation is even or
odd. By limiting what we can say or do in our query language, we get two huge
rewards — ease of programming and the ability of the compiler to produce
highly optimized code — that we discussed in Section 2.1.6.

2.4.2 What is an Algebra?

An algebra, in general, consists of operators and atomic operands. For in-
stance, in the algebra of arithmetic, the atomic operands are variables like x
and constants like 15. The operators are the usual arithmetic ones: addition,
subtraction, multiplication, and division. Any algebra allows us to build ez-
pressions by applying operators to atomic operands and/or other expressions
of the algebra. Usually, parentheses are needed to group operators and their
operands. For instance, in arithmetic we have expressions such as (z +y) * z or

((z+7)/(y-3)) +=.



24. AN ALGEBRAIC QUERY LANGUAGE 39

Relational algebra is another example of an algebra. Its atomic operands
are:

1. Variables that stand for relations.

2. Constants, which are finite relations.

We shall next see the operators of relational algebra.

2.4.3 Overview of Relational Algebra

The operations of the traditional relational algebra fall into four broad classes:

a) The usual set operations — union, intersection, and difference — applied
to relations.

b) Operations that remove parts of a relation: “selection” eliminates some
rows (tuples), and “projection” eliminates some columns.

¢) Operations that combine the tuples of two relations, including “Cartesian
product,” which pairs the tuples of two relations in all possible ways, and
various kinds of “join” operations, which selectively pair tuples from two
relations.

d) An operation called “renaming” that does not affect the tuples of a re-
lation, but changes the relation schema, i.e., the names of the attributes
and/or the name of the relation itself.

We generally shall refer to expressions of relational algebra as quertes.

2.4.4 Set Operations on Relations

The three most common operations on sets are union, intersection, and differ-
ence. We assume the reader is familiar with these operations, which are defined
as follows on arbitrary sets R and S:

e RU S, the union of R and S, is the set of elements that are in R or S or
both. An element appears only once in the union even if it is present in
both R and S.

e RN S, the intersection of R and S, is the set of elements that are in both
R and S.

e R— S, the difference of R and S, is the set of elements that are in R but
not in S. Note that R — S is different from S — R; the latter is the set of
elements that are in S but not in R.

When we apply these operations to relations, we need to put some conditions
on R and S:



40 CHAPTER 2. THE RELATIONAL MODEL OF DATA

1. R and S must have schemas with identical sets of attributes, and the
types (domains) for each attribute must be the same in R and S.

2. Before we compute the set-theoretic union, intersection, or difference of
sets of tuples, the columns of R and S must be ordered so that the order
of attributes is the same for both relations.

Sometimes we would like to take the union, intersection, or difference of
relations that have the same number of attributes, with corresponding domains,
but that use different names for their attributes. If so, we may use the renaming
operator to be discussed in Section 2.4.11 to change the schema of one or both
relations and give them the same set of attributes.

name address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood | F 9/9/99
Mark Hamill 456 QOak Rd., Brentwood M 8/8/88
Relation R
name | address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood

F ’ 9/9/99

Harrison Ford | 789 Palm Dr., Beverly Hills | M 7/7/77

Relation S

Figure 2.12: Two relations

Example 2.8: Suppose we have the two relations R and S, whose schemas
are both that of relation MovieStar Section 2.2.8. Current instances of R and
S are shown in Fig. 2.12. Then the union RU S is

name address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood F 9/9/99
Mark Hamill 456 Dak Rd., Brentwood M 8/8/88
Harrison Ford | 789 Palm Dr., Beverly Hills | M T7/7/77

Note that the two tuples for Carrie Fisher from the two relations appear only
once in the result.
The intersection RN S is
name address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood | F 9/9/99

Now, only the Carrie Fisher tuple appears, because only it is in both relations.
The difference R — S is



2.4. AN ALGEBRAIC QUERY LANGUAGE 41

name address | gender | birthdate
Mark Hamill | 456 Oak Rd., Brentwood | M | 8/8/88

That is, the Fisher and Hamill tuples appear in R and thus are candidates for
R — S. However, the Fisher tuple also appearsin S and soisnotin R—S. O

2.4.5 Projection

The projection operator is used to produce from a relation R a new relation
that has only some of R’s columns. The value of expression 74, 4,....,4,(R) is
a relation that has only the columns for attributes A;, As,..., A, of R. The
schema for the resulting value is the set of attributes {4;, As,... , Ap}, which
we conventionally show in the order listed.

title | year | length | genre | studioName | producerC#
Star Wars 1977 | 124 [ sciFi | Fox 12345
Galaxy Quest 1999 | 104 comedy | DreamWorks | 67890
Wayne’s World | 1992 | 95 comedy | Paramount | 99999

Figure 2.13: The relation Movies

Example 2.9: Consider the relation Movies with the relation schema de-
scribed in Section 2.2.8. An instance of this relation is shown in Fig. 2.13. We
can project this relation onto the first three attributes with the expression:

Ttitle,year,length (MOVieS)
The resulting relation is

title year | length
Star Wars 1977 | 124

Galaxy Quest 1999 | 104
Wayne’s World | 1992 | 95

As another example, we can project onto the attribute genre with the ex-
pression Tgenre (Movies). The result is the single-column relation

genre
sciFi
comedy
Notice that there are only two tuples in the resulting relation, since the last two

tuples of Fig. 2.13 have the same value in their component for attribute genre,
and in the relational algebra of sets, duplicate tuples are always eliminated. O



42 CHAPTER 2. THE RELATIONAL MODEL OF DATA

A Note About Data Quality :-)

While we have endeavored to make example data as accurate as possible,
we have used bogus values for addresses and other personal information
about movie stars, in order to protect the privacy of members of the acting
profession, many of whom are shy individuals who shun publicity.

2.4.6 Selection

The selection operator, applied to a relation R, produces a new relation with a
subset of R’s tuples. The tuples in the resulting relation are those that satisfy
some condition C that involves the attributes of R. We denote this operation
oc(R). The schema for the resulting relation is the same as R’s schema, and
we conventionally show the attributes in the same order as we use for R.

C' is a conditional expression of the type with which we are familiar from
conventional programming languages; for example, conditional expressions fol-
low the keyword if in programming languages such as C or Java. The only
difference is that the operands in condition C are either constants or attributes
of R. We apply C to each tuple t of R by substituting, for each attribute A
appearing in condition C, the component of ¢ for attribute A. If after substi-
tuting for each attribute of C' the condition C is true, then ¢ is one of the tuples
that appear in the result of o¢(R); otherwise ¢ is not in the result.

Example 2.10: Let the relation Movies be as in Fig. 2.13. Then the value of
eXpression Ojength>100 (Movies) is

title | year | length | genre | studioName | producerC#
Star Wars 1977 | 124 sciFi Fox 12345
Galaxy Quest | 1999 | 104 comedy | DreamWorks | 67890

The first tuple satisfies the condition length > 100 because when we substitute
for length the value 124 found in the component of the first tuple for attribute
length, the condition becomes 124 > 100. The latter condition is true, so we
accept the first tuple. The same argument explains why the second tuple of
Fig. 2.13 is in the resuit.

The third tuple has a length component 95. Thus, when we substitute for
length we get the condition 95 > 100, which is false. Hence the last tuple of
Fig. 2.13 is not in the result. O

Example 2.11: Suppose we want the set of tuples in the relation Movies that
represent Fox movies at least 100 minutes long. We can get these tuples with
a more complicated condition, involving the AND of two subconditions. The
expression is

Olength>100 AND studioName=’Fox’ (MOVieS)



2.4. AN ALGEBRAIC QUERY LANGUAGE 43

The tuple
title year I length | genre | studioName l producer C#
Star Wars | 1977 | 124 | sciFi | Fox | 12345

is the only one in the resulting relation. O

2.4.7 Cartesian Product

The Cartesian product (or cross-product, or just product) of two sets R and
S is the set of pairs that can be formed by choosing the first element of the
pair to be any element of R and the second any element of S. This product
is denoted R x S. When R and S are relations, the product is essentially the
same. However, since the members of R and S are tuples, usually consisting
of more than one component, the result of pairing a tuple from R with a tuple
from S is a longer tuple, with one component for each of the components of the
constituent tuples. By convention, the components from R (the left operand)
precede the components from S in the attribute order for the result.

The relation schema for the resulting relation is the union of the schemas
for R and S. However, if R and S should happen to have some attributes in
common, then we need to invent new names for at least one of each pair of
identical attributes. To disambiguate an attribute A that is in the schemas of
both R and S, we use R.A for the attribute from R and S.A for the attribute
from S.

Example 2.12: For conciseness, let us use an abstract example that illustrates
the product operation. Let relations R and S have the schemas and tuples
shown in Fig. 2.14(a) and (b). Then the product R x S consists of the six
tuples shown in Fig. 2.14(c). Note how we have paired each of the two tuples of
R with each of the three tuples of S. Since B is an attribute of both schemas,
we have used R.B and S.B in the schema for R x S. The other attributes are
unambiguous, and their names appear in the resulting schema unchanged. O

2.4.8 Natural Joins

More often than we want to take the product of two relations, we find a need to
join them by pairing only those tuples that match in some way. The simplest
sort of match is the natural join of two relations R and S, denoted R 1< S, in
which we pair only those tuples from R and S that agree in whatever attributes
are common to the schemas of R and S. More precisely, let A;, Ay, ..., A, be
all the attributes that are in both the schema of R and the schema of S. Then
a tuple r from R and a tuple s from S are successfully paired if and only if r
and s agree on each of the attributes A;, Az,... ,4,.

If the tuples r and s are successfully paired in the join R 0« S, then the
result of the pairing is a tuple, called the joined tuple, with one component for
each of the attributes in the union of the schemas of R and S. The joined tuple



44 CHAPTER 2. THE RELATIONAL MODEL OF DATA

B |C |D
215 |6
4 |7 |8
9 |10 ] 11

Wwwr oy

B NN Ny

=~ = O
o

= 00O 00Mm
[

0

(c) Result R x S

Figure 2.14: Two relations and their Cartesian product

agrees with tuple r in each attribute in the schema of R, and it agrees with
s in each attribute in the schema of S. Since r and s are successfully paired,
the joined tuple is able to agree with both these tuples on the attributes they
have in common. The construction of the joined tuple is suggested by Fig. 2.15.
However, the order of the attributes need not be that convenient; the attributes
of R and S can appear in any order.

Example 2.13: The natural join of the relations R and S from Fig. 2.14(a)
and (b) is

=

| ¢ |
5
7

The only attribute common to R and S is B. Thus, to pair successfully, tuples
need only to agree in their B components. If so, the resulting tuple has com-
ponents for attributes A (from R), B (from either R or S), C (from S), and D
(from S).

0 &ty

| B
2
3|4



2.4. AN ALGEBRAIC QUERY LANGUAGE 45

R

[ ]

joined tuple J

Figure 2.15: Joining tuples

In this example, the first tuple of R successfully pairs with only the first
tuple of S; they share the value 2 on their common attribute B. This pairing
yields the first tuple of the result: (1,2,5,6). The second tuple of R pairs
successfully only with the second tuple of S, and the pairing yields (3,4, 7, 8).
Note that the third tuple of S does not pair with any tuple of R and thus has
no effect on the result of R > S. A tuple that fails to pair with any tuple of
the other relation in a join is said to be a dangling tuple. O

Example 2.14: The previous example does not illustrate all the possibilities
inherent in the natural join operator. For example, no tuple paired successfully
with more than one tuple, and there was only one attribute in common to the
two relation schemas. In Fig. 2.16 we see two other relations, U and V, that
share two attributes between their schemas: B and C. We also show an instance
in which one tuple joins with several tuples.

For tuples to pair successfully, they must agree in both the B and C' com-
ponents. Thus, the first tuple of U joins with the first two tuples of V', while
the second and third tuples of U join with the third tuple of V. The result of
these four pairings is shown in Fig. 2.16(c). O

2.4.9 Theta-Joins

The natural join forces us to pair tuples using one specific condition. While this
way, equating shared attributes, is the most common basis on which relations
are joined, it is sometimes desirable to pair tuples from two relations on some
other basis. For that purpose, we have a related notation called the theta-
join. Historically, the “theta” refers to an arbitrary condition, which we shall
represent by C rather than 6.

The notation for a theta-join of relations R and S based on condition C is
R S. The result of this operation is constructed as follows:

1. Take the product of R and S.

2. Select from the product only those tuples that satisfy the condition C.



46 CHAPTER 2. THE RELATIONAL MODEL OF DATA

© o R|n
~ ol gy
© o w|q

(a) Relation U

B|C|D
2 |3 |4
213 1|5
718 |10

(b) Relation V

| |

= =
OOCJ'I!J>b

C
3
3
8
8

~N NN Ny

A
1
1
6
9
(c) Result U V

Figure 2.16: Natural join of relations

As with the product operation, the schema for the result is the union of the
schemas of R and S, with “R.” or “S.” prefixed to attributes if necessary to
indicate from which schema the attribute came.

Example 2.15: Consider the operation U < 4<p V, where U and V are the
relations from Fig. 2.16(a) and (b). We must consider all nine pairs of tuples,
one from each relation, and see whether the A component from the U-tuple
is less than the D component of the V-tuple. The first tuple of U, with an A
component of 1, successfully pairs with each of the tuples from V. However, the
second and third tuples from U, with A components of 6 and 9, respectively,
pair successfully with only the last tuple of V. Thus, the result has only five
tuples, constructed from the five successful pairings. This relation is shown in
Fig. 2.17. O

Notice that the schema for the result in Fig. 2.17 consists of all six attributes,
with U and V prefixed to their respective occurrences of attributes B and C to
distinguish them. Thus, the theta-join contrasts with natural join, since in the
latter common attributes are merged into one copy. Of course it makes sense to



2.4. AN ALGEBRAIC QUERY LANGUAGE 47

A|UB|UC|VB|VC|D
112 3 2 3 4
172 3 2 3 5
1 ]2 3 7 8 10
6 |7 8 7 8 10
o |7 |8 |7 |8 |10

Figure 2.17: Result of U gacp V

do so in the case of the natural join, since tuples don’t pair unless they agree in
their common attributes. In the case of a theta-join, there is no guarantee that
compared attributes will agree in the result, since they may not be compared
with =,

Example 2.16: Here is a theta-join on the same relations U and V' that has
a more complex condition:

Ut gcp aip vBzv. YV

That is, we require for successful pairing not only that the A component of the
U-tuple be less than the D component of the V-tuple, but that the two tuples
disagree on their respective B components. The tuple

A|UB|UC|VB|VC|D
12 3 |7 |8 |10

is the only one to satisfy both conditions, so this relation is the result of the
theta-join above. O

2.4.10 Combining Operations to Form Queries

If all we could do was to write single operations on one or two relations as
queries, then relational algebra would not be nearly as useful as it is. However,
relational algebra, like all algebras, allows us to form expressions of arbitrary
complexity by applying operations to the result of other operations.

One can construct expressions of relational algebra by applying operators
to subexpressions, using parentheses when necessary to indicate grouping of
operands. It is also possible to represent expressions as expression trees; the
latter often are easier for us to read, although they are less convenient as a
machine-readable notation.

Example 2.17: Suppose we want to know, from our running Movies relation,
“What are the titles and years of movies made by Fox that are at least 100
minutes long?” One way to compute the answer to this query is:

1. Select those Movies tuples that have length > 100.



48 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2. Select those Movies tuples that have studioName = *Fox’.
3. Compute the intersection of (1) and (2).

1. Project the relation from (3) onto attributes title and year.

T title, year

M

N

° length >= 100 ° studioName = ' Fox’

Movies Movies

Figure 2.18: Expression tree for a relational algebra expression

In Fig. 2.18 we see the above steps represented as an expression tree. Ex-
pression trees are evaluated bottom-up by applying the operator at an interior
node to the arguments, which are the results of its children. By proceeding
bottom-up, we know that the arguments will be available when we need them.
The two selection nodes correspond to steps (1) and (2). The intersection node
corresponds to step (3), and the projection node is step (4).

Alternatively, we could represent the same expression in a conventional,
linear notation, with parentheses. The formula

Ttitle,year (UlengchIOO (MOVieS) N OstudioName=’'Fox’ (Movj-es))

represents the same expression.

Incidentally, there is often more than one relational algebra expression that
represents the same computation. For instance, the above query could also be
written by replacing the intersection by logical AND within a single selection
operation. That is,

Ttitle,year (Ulength2100 AND studioName='Fox’ (MOVies))

is an equivalent form of the query. O



2.4. AN ALGEBRAIC QUERY LANGUAGE 49

Equivalent Expressions and Query Optimization

All database systems have a query-answering system, and many of them
are based on a language that is similar in expressive power to relational
algebra. Thus, the query asked by a user may have many equivalent ez-
pressions (expressions that produce the same answer whenever they are
given the same relations as operands), and some of these may be much
more quickly evaluated. An important job of the query “optimizer” dis-
cussed briefly in Section 1.2.5 is to replace one expression of relational
algebra by an equivalent expression that is more efficiently evaluated.

2.4.11 Naming and Renaming

In order to control the names of the attributes used for relations that are con-
structed by applying relational-algebra operations, it is often convenient to
use an operator that explicitly renames relations. We shall use the operator
PS(A1,As,...,A,)(R) to rename a relation R. The resulting relation has exactly
the same tuples as R, but the name of the relation is S. Moreover, the at-
tributes of the result relation S are named A;, As,..., A,, in order from the
left. If we only want to change the name of the relation to S and leave the
attributes as they are in R, we can just say pgs(R).

Example 2.18: In Example 2.12 we took the product of two relations R and
S from Fig. 2.14(a) and (b) and used the convention that when an attribute
appears in both operands, it is renamed by prefixing the relation name to it.
Suppose, however, that we do not wish to call the two versions of B by names
R.B and S.B; rather we want to continue to use the name B for the attribute
that comes from R, and we want to use X as the name of the attribute B
coming from S. We can rename the attributes of S so the first is called X. The
result of the expression pg(x,c,p)(S) is a relation named S that looks just like
the relation S from Fig. 2.14, but its first column has attribute X instead of B.

AlB|Xx|cC |D
112 |2 5 6
112 |4 7 8
11219 10 | 11
3 (4|2 5 6
3 (14 |4 7 8
314 |9 10 | 11

Figure 2.19: R X ps(x,c,p)(5)



50 CHAPTER 2. THE RELATIONAL MODEL OF DATA

When we take the product of R with this new relation, there is no conflict
of names among the attributes, so no further renaming is done. That is, the
result of the expression R X pg(x,c,p)(S) is the relation R x § from Fig. 2.14(c),
except that the five columns are labeled A, B, X, C, and D, from the left. This
relation is shown in Fig. 2.19.

As an alternative, we could take the product without renaming, as we did
in Example 2.12, and then rename the result. The expression

PRS(A,B,X,c,0)(R x S)

yields the same relation as in Fig. 2.19, with the same set of attributes. But
this relation has a name, RS, while the result relation in Fig. 2.19 has no name.
O

2.4.12 Relationships Among Operations

Some of the operations that we have described in Section 2.4 can be expressed
in terms of other relational-algebra operations. For example, intersection can
be expressed in terms of set difference:

RNS=R-(R-5)

That is, if R and S are any two relations with the same schema, the intersection
of R and S can be computed by first subtracting S from R to form a relation
T consisting of all those tuples in R but not S. We then subtract T' from R,
leaving only those tuples of R that are also in S.

The two forms of join are also expressible in terms of other operations.
Theta-join can be expressed by product and selection:

Rl><105=ac(RxS)

The natural join of R and S can be expressed by starting with the product
R x S. We then apply the selection operator with a condition C of the form

R.A; =S.A; AND R.A; = S.Ay AND---AND R.A, = S.A,

where Aj, As,. .., A, are all the attributes appearing in the schemas of both R
and S. Finally, we must project out one copy of each of the equated attributes.
Let L be the list of attributes in the schema of R followed by those attributes
in the schema of S that are not also in the schema of R. Then

R8 = WL(UC(R x S))

Example 2.19: The natural join of the relations U and V' from Fig. 2.16 can
be written in terms of product, selection, and projection as:

TAU.B,U.C,D (UU.B:v.B a ve=v.eU x V))



2.4. AN ALGEBRAIC QUERY LANGUAGE 51

That is, we take the product U x V. Then we select for equality between each
pair of attributes with the same name — B and C in this example. Finally,
we project onto all the attributes except one of the B’s and one of the C’s; we
have chosen to eliminate the attributes of V whose names also appear in the
schema, of U.

For another example, the theta-join of Example 2.16 can be written

G 4<p AND v.Bzv.B(U X V)

That is, we take the product of the relations U and V and then apply the
condition that appeared in the theta-join. O

The rewriting rules mentioned in this section are the only “redundancies”
among the operations that we have introduced. The six remaining operations —
union, difference, selection, projection, product, and renaming — form an in-
dependent set, none of which can be written in terms of the other five.

2.4.13 A Linear Notation for Algebraic Expressions

In Section 2.4.10 we used an expression tree to represent a complex expression
of relational algebra. An alternative is to invent names for the temporary
relations that correspond to the interior nodes of the tree and write a sequence
of assignments that create a value for each. The order of the assignments is
flexible, as long as the children of a node NV have had their values created before
we attempt to create the value for NV itself.

The notation we shall use for assignment statements is:

1. A relation name and parenthesized list of attributes for that relation. The
name Answer will be used conventionally for the result of the final step;
i.e., the name of the relation at the root of the expression tree.

2. The assignment symbol :=.

3. Any algebraic expression on the right. We can choose to use only one
operator per assignment, in which case each interior node of the tree gets
its own assignment statement. However, it is also permissible to combine
several algebraic operations in one right side, if it is convenient to do so.

Example 2.20: Consider the tree of Fig. 2.18. One possible sequence of as-
signments to evaluate this expression is:

R(t,y,1,i,s,p) := UlengchIOO(MOVieS)

S(t ,y,l,i,s,P) *= OstudioName=>Fox’ (MOVies)
T(t,y,1,i,s,p) := RN S

Answer (title, year) := m;,(T)



52 CHAPTER 2. THE RELATIONAL MODEL OF DATA

The first step computes the relation of the interior node labeled oyengtn>100 in
Fig. 2.18, and the second step computes the node labeled 0 studioName=Fox?-
Notice that we get renaming “for free,” since we can use any attributes and
relation name we wish for the left side of an assignment. The last two steps
compute the intersection and the projection in the obvious way.

It is also permissible to combine some of the steps. For instance, we could
combine the last two steps and write:

R(t,y,1,i,s,p) := Olength>100 (Movies)
S(t,y,l,iss,p) 1= OstudioName= Fox’ (Movies)
Answer (title, year) := m,(R N 8)

We could even substitute for R and S in the last line and write the entire
expression in one line. 0O

2.4.14 Exercises for Section 2.4

Exercise 2.4.1: This exercise builds upon the products schema of Exercise
2.3.1. Recall that the database schema consists of four relations, whose schemas
are:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Some sample data for the relation Product is shown in Fig. 2.20. Sample
data for the other three relations is shown in Fig. 2.21. Manufacturers and
model numbers have been “sanitized,” but the data is typical of products on
sale at the beginning of 2007.

Write expressions of relational algebra to answer the following queries. You
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs.
2.20 and 2.21, show the result of your query. However, your answer should work
for arbitrary data, not just the data of these figures.

a) What PC models have a speed of at least 3.007
b) Which manufacturers make laptops with a hard disk of at least 100GB?

¢) Find the model number and price of all products (of any type) made by
manufacturer B.

d) Find the model numbers of all color laser printers.
e) Find those manufacturers that sell Laptops, but not PC’s.

! f) Find those hard-disk sizes that occur in two or more PC’s.



2.4. AN ALGEBRAIC QUERY LANGUAGE

maker | model | type

A 1001 | pc

A 1002 | pc

A 1003 | pc

A 2004 | laptop

A 2005 | laptop

A 2006 | laptop

B 1004 | pc

B 1005 | pc

B 1006 | pc

B 2007 | laptop

C 1007 | pc

D 1008 | pc

D 1009 | pc

D 1010 | pc

D 3004 | printer
D 3005 | printer
E 1011 | pc

E 1012 | pc

E 1013 | pc

E 2001 | laptop

E 2002 | laptop

E 2003 | laptop

E 3001 | printer
E 3002 | printer
E 3003 | printer
F 2008 | laptop

F 2009 | laptop

G 2010 | laptop

H 3006 | printer
H 3007 | printer

Figure 2.20: Sample data for Product

53



CHAPTER 2. THE RELATIONAL MODEL OF DATA

model | speed | ram | hd | price

1001 | 2.66 | 1024 | 250 | 2114
1002 | 2.10 512 | 250 995
1003 | 1.42 512 80 478
1004 | 2.80 | 1024 | 250 649
1005 | 3.20 512 | 2560 630
1006 | 3.20 | 1024 | 320 | 1049
1007 | 2.20 | 1024 | 200 510
1008 | 2.20 | 2048 | 250 770
1009 | 2.00 | 1024 | 250 650
1010 | 2.80 | 2048 | 300 770
1011 | 1.86 | 2048 | 160 959
1012 | 2.80 | 1024 | 160 649
1013 | 3.06 512 80 529

(a) Sample data for relation PC

model | speed | ram | hd | screen | price

2001 | 2.00 | 2048 | 240 | 20.1 3673
2002 {1.73 | 1024 | 80 | 17.0 949
2003 | 1.80 512 60 | 15.4 549
2004 | 2.00 512 60 | 13.3 1150
2005 | 2.16 | 1024 | 120 | 17.0 2500
2006 | 2.00 | 2048 80 | 15.4 1700
2007 | 1.83 | 1024 | 120 | 13.3 1429
2008 | 1.60 | 1024 | 100 | 15.4 900
2009 | 1.60 512 80 | 14.1 680
2010 | 2.00 | 2048 | 160 | 15.4 2300

(b) Sample data for relation Laptop

model | color | type I price
3001 | true ink-jet 99
3002 false | laser 239
3003 true laser 899
3004 | true ink-jet 120
3005 false | laser 120
3006 | true ink-jet 100
3007 true laser 200

(c) Sample data for relation Printer

Figure 2.21: Sample data for relations of Exercise 2.4.1



2.4. AN ALGEBRAIC QUERY LANGUAGE 55

! g) Find those pairs of PC models that have both the same speed and RAM.
A pair should be listed only once; e.g., list (¢, j) but not (j,1).

' h) Find those manufacturers of at least two different computers (PC’s or
laptops) with speeds of at least 2.80.

1''i} Find the manufacturer(s) of the computer (PC or laptop) with the highest
available speed.

11 j) Find the manufacturers of PC’s with at least three different speeds.

1! k) Find the manufacturers who sell exactly three different models of PC.

Exercise 2.4.2: Draw expression trees for each of your expressions of Exer-
cise 2.4.1.

Exercise 2.4.3: This exercise builds upon Exercise 2.3.2 concerning World
War II capital ships. Recall it involves the following relations:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes(ship, battle, result)

Figures 2.22 and 2.23 give some sample data for these four relations.* Note
that, unlike the data for Exercise 2.4.1, there are some “dangling tuples” in this
data, e.g., ships mentioned in Outcomes that are not mentioned in Ships.

Write expressions of relational algebra to answer the following queries. You
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs.
2.22 and 2.23, show the result of your query. However, your answer should work
for arbitrary data, not just the data of these figures.

a) Give the class names and countries of the classes that carried guns of at
least 16-inch bore.

b) Find the ships launched prior to 1921.
c¢) Find the ships sunk in the battle of the Denmark Strait.

d) The treaty of Washington in 1921 prohibited capital ships heavier than
35,000 tons. List the ships that violated the treaty of Washington.

e) List the name, displacement, and number of guns of the ships engaged in
the battle of Guadalcanal.

f) List all the capital ships mentioned in the database. (Remember that all
these ships may not appear in the Ships relation.)

4Source: J. N. Westwood, Fighting Ships of World War II, Follett Publishing, Chicago,
1975 and R. C. Stern, US Battleships in Action, Squadron/Signal Publications, Carrollton,
TX, 1980.



56 CHAPTER 2. THE RELATIONAL MODEL OF DATA
class | type | country | numGuns | bore | displacement
Bismarck bb Germany 8 15 42000
Iowa bb USA 9 16 46000
Kongo bc Japan 8 14 32000
North Carolina | bb USA 9 16 37000
Renown bc Gt. Britain | 6 15 32000
Revenge bb Gt. Britain | 8 15 29000
Tennessee bb Usa 12 14 32000
Yamato bb Japan 9 18 65000

(a) Sample data for relation Classes

name | date
Denmark Strait | 5/24-27/41
Guadalcanal 11/15/42
North Cape 12/26/43
Surigao Strait | 10/256/44

(b) Sample data for relation Battles

ship | battle | result
Arizona Pearl Harbor sunk
Bismarck Denmark Strait | sunk
California Surigao Strait | ok

Duke of York North Cape ok

Fuso Surigao Strait | sunk
Hood Denmark Strait | sunk
King George V Denmark Strait | ok
Kirishima Guadalcanal sunk
Prince of Wales | Denmark Strait | damaged
Rodney Denmark Strait | ok
Scharnhorst North Cape sunk
South Dakota Guadalcanal damaged
Tennessee Surigao Strait | ok
Washington Guadalcanal ok

West Virginia Surigao Strait | ok
Yamashiro Surigao Strait | sunk

(c) Sample data for relation Dutcomes

Figure 2.22: Data for Exercise 2.4.3



s

2.4. AN ALGEBRAIC QUERY LANGUAGE 57

name | class | launched
California Tennessee 1921
Haruna Kongo 1915
Hiei Kongo 1914
Towa Iowa 1943
Kirishima Kongo 19156
Kongo Kongo 1913
Missouri Iowa 1944
Musashi Yamato 1942
New Jersey Iowa 1943
North Carolina | North Carolina | 1941
Ramillies Revenge 1917
Renown Renown 1916
Repulse Renown 1916
Resolution Revenge 1916
Revenge Revenge 1916
Royal Oak Revenge 1916
Royal Sovereign | Revenge 1916
Tennessee Tennessee 1920
Washington North Carolina | 1941
Wisconsin Iowa 1944
Yamato Yamato 1941

Figure 2.23: Sample data for relation Ships

! g) Find the classes that had only one ship as a member of that class.
! h) Find those countries that had both battleships and battlecruisers.

1) Find those ships that “lived to fight another day”; they were damaged in
one battle, but later fought in another.

Exercise 2.4.4: Draw expression trees for each of your expressions of Exer-
cise 2.4.3.

Exercise 2.4.5: What is the difference between the natural join R < S and
the theta-join R <o S where the condition C is that R.A = S.A for each
attribute A appearing in the schemas of both R and S7

Exercise 2.4.6: An operator on relations is said to be monotone if whenever
we add a tuple to one of its arguments, the result contains all the tuples that
it contained before adding the tuple, plus perhaps more tuples. Which of the
operators described in this section are monotone? For each, either explain why
it is monotone or give an example showing it is not.



58 CHAPTER 2. THE RELATIONAL MODEL OF DATA

! Exercise 2.4.7: Suppose relations R and S have n tuples and m tuples, re-
spectively. Give the minimum and maximum numbers of tuples that the results
of the following expressions can have.

a) Ru S.
b) R S.
¢) oc(R) x S, for some condition C.

d) #mr(R) — S, for some list of attributes L.

! Exercise 2.4.8: The semijoin of relations R and S, written RD>< S, is the set
of tuples ¢ in R such that there is at least one tuple in S that agrees with ¢ in
all attributes that R and S have in common. Give three different expressions
of relational algebra that are equivalent to R ><S.

o

Exercise 2.4.9: The antisemijoin R D< S is the set of tuples ¢ in R that do
not agree with any tuple of S in the attributes common to R and S. Give an
expression of relational algebra equivalent to R D< S.

!! Exercise 2.4.10: Let R be a relation with schema
(A1, Aa,...,An,B1,Bs,... ,By)

and let S be a relation with schema (B, Ba, ..., B,,); that is, the attributes
of S are a subset of the attributes of R. The quotient of R and S, denoted
R+ S, is the set of tuples t over attributes A;, As, ..., A, (i.e., the attributes
of R that are not attributes of S) such that for every tuple s in S, the tuple
ts, consisting of the components of ¢t for A;, As,..., A, and the components
of s for By, Bs,...,Bn, is a member of R. Give an expression of relational
algebra, using the operators we have defined previously in this section, that is
equivalent to R = S.

2.5 Constraints on Relations

We now take up the third important aspect of a data model: the ability to
restrict the data that may be stored in a database. So far, we have seen only one
kind of constraint, the requirement that an attribute or attributes form a key
(Section 2.3.6). These and many other kinds of constraints can be expressed in
relational algebra. In this section, we show how to express both key constraints
and “referential-integrity” constraints; the latter require that a value appearing
in one column of one relation also appear in some other column of the same
or a different relation. In Chapter 7, we see how SQL database systems can
enforce the same sorts of constraints as we can express in relational algebra.



2.5. CONSTRAINTS ON RELATIONS 59

2.5.1 Relational Algebra as a Constraint Language

There are two ways in which we can use expressions of relational algebra to
express constraints.

1. If R is an expression of relational algebra, then R = @ is a constraint
that says “The value of R must be empty,” or equivalently “There are no
tuples in the result of R.”

2. If R and S are expressions of relational algebra, then R C S is a constraint
that says “Every tuple in the result of R must also be in the result of S.”
Of course the result of S may contain additional tuples not produced by
R.

These ways of expressing constraints are actually equivalent in what they
can express, but sometimes one or the other is clearer or more succinet. That
is, the constraint B C S could just as well have been written R — S = (. To
see why, notice that if every tuple in R is also in S, then surely R — S is empty.
Conversely, if R — S contains no tuples, then every tuple in R must be in S (or
else it would be in R — S).

On the other hand, a constraint of the first form, R = @, could just as
well have been written R C . Technically, 0 is not an expression of relational
algebra, but since there are expressions that evaluate to @, such as R — R, there
is no harm in using § as a relational-algebra expression.

In the following sections, we shall see how to express significant constraints
in one of these two styles. As we shall see in Chapter 7, it is the first style —
equal-to-the-emptyset — that is most commonly used in SQL programming.
However, as shown above, we are free to think in terms of set-containment if
we wish and later convert our constraint to the equal-to-the-emptyset style.

2.5.2 Referential Integrity Constraints

A common kind of constraint, called a referential integrity constraint, asserts
that a value appearing in one context also appears in another, related context.
For example, in our movies database, should we see a StarsIn tuple that has
person p in the starName component, we would expect that p appears as the
name of some star in the MovieStar relation. If not, then we would question
whether the listed “star” really was a star.

In general, if we have any value v as the component in attribute A of some
tuple in one relation R, then because of our design intentions we may expect
that v will appear in a particular component (say for attribute B) of some tuple
of another relation S. We can express this integrity constraint in relational
algebra as m4(R) C wp(S5), or equivalently, ma(R) — 75(S) = 0.

Example 2.21: Consider the two relations from our running movie database:

Movies(title, year, length, genre, studioName, producerC#)
MovieExec (name, address, cert#, netWorth)



60 CHAPTER 2. THE RELATIONAL MODEL OF DATA

We might reasonably assume that the producer of every movie would have to
appear in the MovieExec relation. If not, there is something wrong, and we
would at least want a system implementing a relational database to inform us
that we had a movie with a producer of which the database had no knowledge.

To be more precise, the producerC# component of each Movies tuple must
also appear in the cert# component of some MovieExec tuple. Since executives
are uniquely identified by their certificate numbers, we would thus be assured
that the movie’s producer is found among the movie executives. We can express
this constraint by the set-containment,

TproducerCy(Movies) C T ersp(MovieExec)

The value of the expression on the left is the set of all certificate numbers ap-
pearing in producerC# components of Movies tuples. Likewise, the expression
on the right’s value is the set of all certificates in the cert# component of
MovieExec tuples. Our constraint says that every certificate in the former set
must also be in the latter set. O

Example 2.22: We can similarly express a referential integrity constraint
where the “value” involved is represented by more than one attribute. For
instance, we may want to assert that any movie mentioned in the relation

StarsIn(movieTitle, movieYear, starName)
also appears in the relation
Movies(title, year, length, genre, studioName, producerC#)

Movies are represented in both relations by title-year pairs, because we agreed
that one of these attributes alone was not sufficient to identify a movie. The
constraint

T movieTitle, movie Year(StarSIn) C Titte, year(MOVieS)

expresses this referential integrity constraint by comparing the title-year pairs
produced by projecting both relations onto the appropriate lists of components.
O

2.5.3 Key Constraints

The same constraint notation allows us to express far more than referential
integrity. Here, we shall see how we can express algebraically the constraint
that a certain attribute or set of attributes is a key for a relation.

Example 2.23: Recall that name is the key for relation

MovieStar(name, address, gender, birthdate)



2.5. CONSTRAINTS ON RELATIONS 61

That is, no two tuples agree on the name component. We shall express alge-
braically one of several implications of this constraint: that if two tuples agree
on name, then they must also agree on address. Note that in fact these “two”
tuples, which agree on the key name, must be the same tuple and therefore
certainly agree in all attributes.

The idea is that if we construct all pairs of MovieStar tuples (¢1,%2), we
must not find a pair that agree in the name component and disagree in the
address component. To construct the pairs we use a Cartesian product, and
to search for pairs that violate the condition we use a selection. We then assert
the constraint by equating the result to 0.

To begin, since we are taking the product of a relation with itself, we need
to rename at least one copy, in order to have names for the attributes of the
product. For succinctness, let us use two new names, MS1 and MS2, to refer
to the MovieStar relation. Then the requirement can be expressed by the
algebraic constraint:

O MS1.name=MS2.name AND MS1.address#MS2.address (MS]- X MS2) =0

In the above, MS1 in the product MS1 x MS2 is shorthand for the renaming:

PMS1(name,address,gender,birthdate) (MOVieStar)

and MS2 is a similar renaming of MovieStar. O

2.5.4 Additional Constraint Examples

There are many other kinds of constraints that we can express in relational
algebra and that are useful for restricting database contents. A large family
of constraints involve the permitted values in a context. For example, the fact
that each attribute has a type constrains the values of that attribute. Often
the constraint is quite straightforward, such as “integers only” or “character
strings of length up to 30.” Other times we want the values that may appear in
an attribute to be restricted to a small enumerated set of values. Other times,
there are complex limitations on the values that may appear. We shall give two
examples, one of a simple domain constraint for an attribute, and the second a
more complicated restriction.

Example 2.24: Suppose we wish to specify that the only legal values for the
gender attribute of MovieStar are ’F? and ’M’. We can express this constraint
algebraically by:

Ogender#’F’ AND gende,.#,w(MovieStar) = @

That is, the set of tuples in MovieStar whose gender component is equal to
neither ’F’ nor *M’ is empty. 0O



62 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Example 2.25: Suppose we wish to require that one must have a net worth
of at least $10,000,000 to be the president of a movie studio. We can express
this constraint algebraically as follows. First, we need to theta-join the two
relations

MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

using the condition that presC# from Studio and cert# from MovieExec are
equal. That join combines pairs of tuples consisting of a studio and an executive,
such that the executive is the president of the studio. If we select from this
relation those tuples where the net worth is less than ten million, we have a set
that, according to our constraint, must be empty. Thus, we may express the
constraint as:

O net Worth<10000000(Studio M presCpie cert MovieExec) = 0

An alternative way to express the same constraint is to compare the set
of certificates that represent studio presidents with the set of certificates that
represent executives with a net worth of at least $10,000,000; the former must
be a subset of the latter. The containment

7"’presC‘,-»?f(Studio) C Teert# (anetWo'rchIOOOOOOO (MOVieExeC))

expresses the above idea. 0O

2.5.5 Exercises for Section 2.5

Exercise 2.5.1: Express the following constraints about the relations of Ex-
ercise 2.3.1, reproduced here:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

You may write your constraints either as containments or by equating an ex-
pression to the empty set. For the data of Exercise 2.4.1, indicate any violations
to your constraints.

a) A PC with a processor speed less than 2.00 must not sell for more than
$500.

b) A laptop with a screen size less than 15.4 inches must have at least a 100
gigabyte hard disk or sell for less than $1000.

! ¢) No manufacturer of PC’s may also make laptops.



o

—

2.6. SUMMARY OF CHAPTER 2 63

11 d) A manufacturer of a PC must also make a laptop with at least as great a
processor speed.

! e) If a laptop has a larger main memory than a PC, then the laptop must
also have a higher price than the PC.

Exercise 2.5.2: Express the following constraints in relational algebra. The
constraints are based on the relations of Exercise 2.3.2:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes(ship, battle, result)

You may write your constraints either as containments or by equating an ex-
pression to the empty set. For the data of Exercise 2.4.3, indicate any violations
to your constraints.

a) No class of ships may have guns with larger than 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger
than 14 inches.

! ¢) No class may have more than 2 ships.
! d) No country may have both battleships and battlecruisers.

! e) No ship with more than 9 guns may be in a battle with a ship having
fewer than 9 guns that was sunk.

Exercise 2.5.3: Suppose R and S are two relations. Let C' be the referen-
tial integrity constraint that says: whenever R has a tuple with some values
v1,vs,... ,Vy, in particular attributes Ay, As, ... , A, there must be a tuple of S
that has the same values vy, vs,... ,v, in particular attributes By, By, ... , By.
Show how to express constraint C in relational algebra.

Exercise 2.5.4: Another algebraic way to express a constraint is E; = E»,
where both E; and E; are relational-algebra expressions. Can this form of
constraint express more than the two forms we discussed in this section?

2.6 Summary of Chapter 2

4 Data Models: A data model is a notation for describing the structure of
the data in a database, along with the constraints on that data. The data
model also normally provides a notation for describing operations on that
data: queries and data modifications.



64

CHAPTER 2. THE RELATIONAL MODEL OF DATA

Relational Model: Relations are tables representing information. Columns
are headed by attributes; each attribute has an associated domain, or
data type. Rows are called tuples, and a tuple has one component for
each attribute of the relation.

Schemas: A relation name, together with the attributes of that relation
and their types, form the relation schema. A collection of relation schemas
forms a database schema. Particular data for a relation or collection of
relations is called an instance of that relation schema or database schema.

Keys: An important type of constraint on relations is the assertion that
an attribute or set of attributes forms a key for the relation. No two
tuples of a relation can agree on all attributes of the key, although they
can agree on some of the key attributes.

Semistructured Data Model: In this model, data is organized in a tree or
graph structure. XML is an important example of a semistructured data
model.

SQL: The language SQL is the principal query language for relational
database systems. The current standard is called SQL-99. Commercial
systems generally vary from this standard but adhere to much of it.

Data Definition: SQL has statements to declare elements of a database
schema. The CREATE TABLE statement allows us to declare the schema
for stored relations (called tables), specifying the attributes, their types,
default values, and keys.

Altering Schemas: We can change parts of the database schema with an
ALTER statement. These changes include adding and removing attributes
from relation schemas and changing the default value associated with an
attribute. We may also use a DROP statement to completely eliminate
relations or other schema elements.

Relational Algebra: This algebra underlies most query languages for the
relational model. Its principal operators are union, intersection, differ-
ence, selection, projection, Cartesian product, natural join, theta-join,
and renaming.

Selection and Projection: The selection operator produces a result con-
sisting of all tuples of the argument relation that satisfy the selection
condition. Projection removes undesired columns from the argument re-
lation to produce the result.

Joins: We join two relations by comparing tuples, one from each relation.
In a natural join, we splice together those pairs of tuples that agree on all
attributes common to the two relations. In a theta-join, pairs of tuples
are concatenated if they meet a selection condition associated with the
theta-join.



2.7. REFERENCES FOR CHAPTER 2 65

4+ Constraints in Relational Algebra: Many common kinds of constraints can
be expressed as the containment of one relational algebra expression in
another, or as the equality of a relational algebra expression to the empty
set.

2.7 References for Chapter 2

The classic paper by Codd on the relational model is [1]. This paper introduces
relational algebra, as well. The use of relational algebra to describe constraints
is from [2]. References for SQL are given in the bibliographic notes for Chap-
ter 6.

The semistructured data model is from [3]. XML is a standard developed
by the World-Wide-Web Consortium. The home page for information about
XML is [4].

1. E. F. Codd, “A relational model for large shared data banks,” Comm.
ACM 13:6, pp. 377-387, 1970.

2. J.-M. Nicolas, “Logic for improving integrity checking in relational data-
bases,” Acta Informatica 18:3, pp. 227-253, 1982.

3. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object ex-
change across heterogeneous information sources,” IEEE Intl. Conf. on
Data Engineering, pp. 251-260, March 1995.

4. World-Wide-Web Consortium, http://wuw.w3.org/XML/


http://www.w3.org/XML/




Chapter 3

Design Theory for
Relational Databases

There are many ways we could go about designing a relational database schema,
for an application. In Chapter 4 we shall see several high-level notations for
describing the structure of data and the ways in which these high-level designs
can be converted into relations. We can also examine the requirements for a
database and define relations directly, without going through a high-level inter-
mediate stage. Whatever approach we use, it is common for an initial relational
schema to have room for improvement, especially by eliminating redundancy.
Often, the problems with a schema involve trying to combine too much into
one relation.

Fortunately, there is a well developed theory for relational databases: “de-
pendencies,” their implications for what makes a good relational database
schema, and what we can do about a schema if it has flaws. In this chapter,
we first identify the problems that are caused in some relation schemas by the
presence of certain dependencies; these problems are referred to as “anomalies.”

Our discussion starts with “functional dependencies,” a generalization of the
idea of a key for a relation. We then use the notion of functional dependencies
to define normal forms for relation schemas. The impact of this theory, called
“normalization,” is that we decompose relations into two or more relations when
that will remove anomalies. Next, we introduce “multivalued dependencies,”
which intuitively represent a condition where one or more attributes of a relation
are independent from one or more other attributes. These dependencies also
lead to normal forms and decomposition of relations to eliminate redundancy.

3.1 Functional Dependencies

There is a design theory for relations that lets us examine a design carefully
and make improvements based on a few simple principles. The theory begins by

67



68 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

having us state the constraints that apply to the relation. The most common
constraint is the “functional dependency,” a statement of a type that generalizes
the idea of a key for a relation, which we introduced in Section 2.5.3. Later in
this chapter, we shall see how this theory gives us simple tools to improve our
designs by the process of “decomposition” of relations: the replacement of one
relation by several, whose sets of attributes together include all the attributes
of the original.

3.1.1 Definition of Functional Dependency

A functional dependency (FD) on a relation R is a statement of the form “If two
tuples of R agree on all of the attributes Ay, As, ..., A, (i.e., the tuples have
the same values in their respective components for each of these attributes),
then they must also agree on all of another list of attributes By, Ba,... ,Bn.
We write this FD formally as A As --- A, — B1Bs - - By, and say that

“A1,A,, ..., A, functionally determine By, Ba,... , By

Figure 3.1 suggests what this FD tells us about any two tuples ¢ and u in the
relation R. However, the A’s and B’s can be anywhere; it is not necessary for
the A’s and B’s to appear consecutively or for the A’s to precede the B’s.

1 1
= A gt B g
I

il

I

I

|

|

I t
u I |

t

Ifr and Then they
u agree must agree
here, here

Figure 3.1: The effect of a functional dependency on two tuples.

If we can be sure every instance of a relation R will be one in which a given
FD is true, then we say that R satisfies the FD. It is important to remember
that when we say that R satisfies an FD f, we are asserting a constraint on R,
not just saying something about one particular instance of R.

It is common for the right side of an FD to be a single attribute. In fact,
we shall see that the one functional dependency A; A -+ A, = B1Ba - By, is
equivalent to the set of FD’s:

A1A2"'An —)Bl
A1A2"'An —-)32

AAy---Ap = B,



3.1. FUNCTIONAL DEPENDENCIES 69

title | year | length | genre ] studioName | starName
Star Wars 1977 | 124 SciFi Fox Carrie Fisher
Star Wars 1977 | 124 SciFi Fox Mark Hamill
Star Wars 1977 | 124 SciFi Fox Harrison Ford
Gone With the Wind | 1939 | 231 drama | MGM Vivien Leigh
Wayne’s World 1992 | 95 comedy | Paramount Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Meyers

Figure 3.2: An instance of the relation Moviesi(title, year, length,
genre, studioName, starName)

Example 3.1: Let us consider the relation
Movies1(title, year, length, genre, studioName, starName)

an instance of which is shown in Fig. 3.2. While related to our running Movies
relation, it has additional attributes, which is why we call it “Movies1” in-
stead of “Movies.” Notice that this relation tries to “do too much.” It holds
information that in our running database schema was attributed to three dif-
ferent relations: Movies, Studio, and StarsIn. As we shall see, the schema for
Movies1 is not a good design. But to see what is wrong with the design, we
must first determine the functional dependencies that hold for the relation. We
claim that the following FD holds:

title year — length genre studioName

Informally, this FD says that if two tuples have the same value in their
title components, and they also have the same value in their year compo-
nents, then these two tuples must also have the same values in their length
components, the same values in their genre components, and the same values
in their studioName components. This assertion makes sense, since we believe
that it is not possible for there to be two movies released in the same year
with the same title (although there could be movies of the same title released
in different years). This point was discussed in Example 2.1. Thus, we expect
that given a title and year, there is a unique movie. Therefore, there is a unique
length for the movie, a unique genre, and a unique studio.

On the other hand, we observe that the statement

title year — starName

is false; it is not a functional dependency. Given a movie, it is entirely possible
that there is more than one star for the movie listed in our database. Notice
that even had we been lazy and only listed one star for Star Wars and one star
for Wayne’s World (just as we only listed one of the many stars for Gone With
the Wind), this FD would not suddenly become true for the relation Moviesi.



70 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

The reason is that the FD says something about all possible instances of the
relation, not about one of its instances. The fact that we could have an instance
with multiple stars for a movie rules out the possibility that title and year
functionally determine starName. 0O

3.1.2 Keys of Relations

We say a set of one or more attributes {41, As,..., A} is a key for a relation
Rif:

1. Those attributes functionally determine all other attributes of the rela-
tion. That is, it is impossible for two distinct tuples of R to agree on all
of Ay, As,... A,

2. No proper subset of {43, As,...,An} functionally determines all other
attributes of R; i.e., a key must be minimal.

When a key consists of a single attribute 4, we often say that A (rather than
{A}) is a key.

Example 3.2: Attributes {title, year, starName} form a key for the relation
Moviesl of Fig. 3.2. First, we must show that they functionally determine all
the other attributes. That is, suppose two tuples agree on these three attributes:
title, year, and starName. Because they agree on title and year, they must
agree on the other attributes — length, genre, and studioName — as we
discussed in Example 3.1. Thus, two different tuples cannot agree on all of
title, year, and starName; they would in fact be the same tuple.

Now, we must argue that no proper subset of {title, year, starName}
functionally determines all other attributes. To see why, begin by observing
that title and year do not determine starName, because many movies have
more than one star. Thus, {title, year} is not a key.

{year, starName} is not a key because we could have a star in two movies
in the same year; therefore

year starName — title

is not an FD. Also, we claim that {title, starName} is not a key, because two
movies with the same title, made in different years, occasionally have a star in
common.! O

Sometimes a relation has more than one key. If so, it is common to desig-
nate one of the keys as the primary key. In commercial database systems, the
choice of primary key can influence some implementation issues such as how
the relation is stored on disk. However, the theory of FD’s gives no special role
to “primary keys.”

1Since we asserted in an earlier book that there were no known examples of this phe-
nomenon, several people have shown us we were wrong. It’s an interesting challenge to
discover stars that appeared in two versions of the same movie.



3.1. FUNCTIONAL DEPENDENCIES 71

What Is “Functional” About Functional
Dependencies?

A1As--- A, — B is called a “functional” dependency because in principle
there is a function that takes a list of values, one for each of attributes
Ag,Aq, ..., A, and produces a unique value (or no value at all) for B.
For instance, in the Moviesl relation, we can imagine a function that
takes a string like "Star Wars" and an integer like 1977 and produces the
unique value of length, namely 124, that appears in the relation Movies1.
However, this function is not the usual sort of function that we meet in
mathematics, because there is no way to compute it from first principles.
That is, we cannot perform some operations on strings like "Star Wars"
and integers like 1977 and come up with the correct length. Rather, the
function is only computed by lookup in the relation. We look for a tuple
with the given title and year values and see what value that tuple has
for length.

3.1.3 Superkeys

A set of attributes that contains a key is called a superkey, short for “superset
of a key.” Thus, every key is a superkey. However, some superkeys are not
(minimal) keys. Note that every superkey satisfies the first condition of a key: it
functionally determines all other attributes of the relation. However, a superkey
need not satisfy the second condition: minimality.

Example 3.3: In the relation of Example 3.2, there are many superkeys. Not
only is the key

{title, year, starName}
a superkey, but any superset of this set of attributes, such as
{title, year, starName, length, studioName}

is a superkey. O

3.1.4 Exercises for Section 3.1

Exercise 3.1.1: Consider a relation about people in the United States, includ-
ing their name, Social Security number, street address, city, state, ZIP code,
area code, and phone number (7 digits). What FD’s would you expect to hold?
What are the keys for the relation? To answer this question, you need to know
something about the way these numbers are assigned. For instance, can an area



72 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Other Key Terminology

In some books and articles one finds different terminology regarding keys.
One can find the term “key” used the way we have used the term “su-
perkey,” that is, a set of attributes that functionally determine all the
attributes, with no requirement of minimality. These sources typically use
the term “candidate key” for a key that is minimal — that is, a “key” in
the sense we use the term.

code straddle two states? Can a ZIP code straddie two area codes? Can two
people have the same Social Security number? Can they have the same address
or phone number?

Exercise 3.1.2: Consider a relation representing the present position of mole-
cules in a closed container. The attributes are an ID for the molecule, the z, y,
and z coordinates of the molecule, and its velocity in the z, y, and z dimensions.
What FD’s would you expect to hold? What are the keys?

! Exercise 3.1.3: Suppose R is a relation with attributes A;, As,... ,A,. Asa

function of n, tell how many superkeys R has, if:

a

b

) The only key is A;.

) The only keys are A; and As.

¢) The only keys are {41, 4>} and {A3, A4}.
d) The only keys are {A4;, As} and {4;, A3}

3.2 Rules About Functional Dependencies

In this section, we shall learn how to reason about FD’s. That is, suppose we
are told of a set of FD’s that a relation satisfies. Often, we can deduce that the
relation must satisfy certain other FD’s. This ability to discover additional FD’s
is essential when we discuss the design of good relation schemas in Section 3.3.

3.2.1 Reasoning About Functional Dependencies

Let us begin with a motivating example that will show us how we can infer a
functional dependency from other given FD’s.

Example 3.4: If we are told that a relation R(A, B,C) satisfies the FD’s
A = B and B — C, then we can deduce that R also satisfies the FD A — C.
How does that reasoning go? To prove that A — C, we must consider two
tuples of R that agree on A and prove they also agree on C.



3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 73

Let the tuples agreeing on attribute A be (a, b1, c1) and (a, ba,cp). Since R
satisfies A — B, and these tuples agree on A, they must also agree on B. That
is, by = bs, and the tuples are really (a,b,c;) and (a,b,c2), where b is both b
and be. Similarly, since R satisfies B — C, and the tuples agree on B, they
agree on C. Thus, ¢y = c2; i.e., the tuples do agree on C. We have proved
that any two tuples of R that agree on A also agree on C, and that is the FD
A—=C. 0O

FD’s often can be presented in several different ways, without changing the
set of legal instances of the relation. We say:

e Two sets of FD’s S and T are equivalent if the set of relation instances
satisfying S is exactly the same as the set of relation instances satisfying
T.

e More generally, a set of FD’s S follows from a set of FD’s T if every
relation instance that satisfies all the FD’s in T also satisfies all the FD’s
in S.

Note then that two sets of FD’s S and T are equivalent if and only if S follows
from T, and T follows from S.

In this section we shall see several useful rules about FD’s. In general, these
rules let us replace one set of FD’s by an equivalent set, or to add to a set of
FD’s others that follow from the original set. An example is the transitive rule
that lets us follow chains of FD’s, as in Example 3.4. We shall also give an
algorithm for answering the general question of whether one FD follows from
one or more other FD’s.

3.2.2 The Splitting/Combining Rule
Recall that in Section 3.1.1 we commented that the FD:

A1As-- Ay — B1By--- B,
was equivalent to the set of FD’s:
A1A2~"An —)Bl, A1A2"'An—->B2,... ,A1A2'°'An —)Bm

That is, we may split attributes on the right side so that only one attribute
appears on the right of each FD. Likewise, we can replace a collection of FD’s
having a common left side by a single FD with the same left side and all the
right sides combined into one set of attributes. In either event, the new set of
FD’s is equivalent to the old. The equivalence noted above can be used in two
ways.

e We can replace an FD Aj1As---A, = B1B;:---B, by a set of FD’s
A1As--- A, = B; for i = 1,2,... ,m. This transformation we call the
splitting rule.



74 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

o We can replace a set of FD’s AjAs--- A, — B; fori=1,2,...,m by the
single FD A1 A;--- A, = B1By---B,,. We call this transformation the
combining rule.

Example 3.5: In Example 3.1 the set of FD’s:

title year — length
title year — genre
title year — studioName

is equivalent to the single FD:
title year — length genre studioName
that we asserted there. O

The reason the splitting and combining rules are true should be obvious.
Suppose we have two tuples that agree in A;, As,... ,A,. As a single FD,
we would assert “then the tuples must agree in all of By, Bs,... ,Bn.” As
individual FD’s, we assert “then the tuples agree in B;, and they agree in By,
and,..., and they agree in B,,.” These two conclusions say exactly the same
thing.

One might imagine that splitting could be applied to the left sides of FD’s
as well as to right sides. However, there is no splitting rule for left sides, as the
following example shows.

Example 3.6: Consider one of the FD’s such as:
title year — length
for the relation Movies1 in Example 3.1. If we try to split the left side into

title — length
year — length

then we get two false FD’s. That is, title does not functionally determine
length, since there can be several movies with the same title (e.g., King Kong)
but of different lengths. Similarly, year does not functionally determine length,
because there are certainly movies of different lengths made in any one year.
0O

3.2.3 Trivial Functional Dependencies

A constraint of any kind on a relation is said to be trivial if it holds for every
instance of the relation, regardless of what other constraints are assumed. When
the constraints are FD’s, it is easy to tell whether an FD is trivial. They are
the FD’s A;As--- A, — B Bs --- By, such that

{B17B2$"' ,Bm} g {AlaAZ"" 7An}

That is, a trivial FD has a right side that is a subset of its left side. For example,



3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 75

title year — title
is a trivial FD, as is
title — title

Every trivial FD holds in every relation, since it says that “two tuples that
agree in all of Ay, As, ..., A, agree in a subset of them.” Thus, we may assume
any trivial FD, without having to justify it on the basis of what FD’s are
asserted for the relation.

There is an intermediate situation in which some, but not all, of the at-
tributes on the right side of an FD are also on the left. This FD is not trivial,
but it can be simplifed by removing from the right side of an FD those attributes
that appear on the left. That is:

e The FD A As--- A, — B1B; --- B, is equivalent to
A1A2--’An — 0102"'Ck
where the C’s are all those B’s that are not also A’s.

We call this rule, illustrated in Fig. 3.3, the trivial-dependency rule.

If ¢ and Then they
u agree  must agree
onthe As onthe Bs

So surely
they agree
onthe Cs

Figure 3.3: The trivial-dependency rule

3.2.4 Computing the Closure of Attributes

Before proceeding to other rules, we shall give a general principle from which
all true rules follow. Suppose {41, A,...,An} is a set of attributes and S



76 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

is a set of FD’s. The closure of {A1, Ag,... , A} under the FD’s in S is the
set of attributes B such that every relation that satisfies all the FD’s in set
S also satisfies AjAy---A, — B. That is, 41A42---A, — B follows from
the FD’s of S. We denote the closure of a set of attributes A;A4s--- A, by
{A1,4s,... ,A,}*. Note that A;, A, ..., A, are always in {41, 4s,... , Ax}T
because the FD A; Ay --- A, — A; is trivial when ¢ is one of 1,2,... ,n.

Closure

Pushing out

—

Initial set
of attributes

Figure 3.4: Computing the closure of a set of attributes

Figure 3.4 illustrates the closure process. Starting with the given set of
attributes, we repeatedly expand the set by adding the right sides of FD’s as
soon as we have included their left sides. Eventually, we cannot expand the set
any further, and the resulting set is the closure. More precisely:

Algorithm 3.7: Closure of a Set of Attributes.
INPUT: A set of attributes {A4;, As,... ,A,} and a set of FD’s S.
OUTPUT: The closure {4, 4z,...,4,}".

1. If necessary, split the FD’s of S, so each FD in S has a single attribute
on the right.

2. Let X be a set of attributes that eventually will become the closure.
Initialize X to be {41, A2,... ,A4,}.

3. Repeatedly search for some FD
Ble v Bm - C

such that all of By, Ba, ... , B,, are in the set of attributes X, but C is not.
Add C to the set X and repeat the search. Since X can only grow, and
the number of attributes of any relation schema must be finite, eventually
nothing more can be added to X, and this step ends.



3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 77

4. The set X, after no more attributes can be added to it, is the correct
value of {Al,AQ, ces ,An}+.

O

Example 3.8: Let us consider a relation with attributes A, B, C, D, E, and
F'. Suppose that this relation has the FD’s AB — C, BC - AD, D — E, and
CF — B. What is the closure of {4, B}, that is, {4, B}*?

First, split BC — AD into BC — A and BC — D. Then, start with
X = {A, B}. First, notice that both attributes on the left side of FD AB - C
are in X, so we may add the attribute C, which is on the right side of that FD.
Thus, after one iteration of Step 3, X becomes {4, B,C}.

Next, we see that the left sides of BC — A and BC — D are now contained
in X, so we may add to X the attributes A and D. A is already there, but
D is not, so X next becomes {A, B,C, D}. At this point, we may use the FD
D — E to add E to X, which is now {4, B,C, D, E}. No more changes to X
are possible. In particular, the FD C'F — B can not be used, because its left
side never becomes contained in X. Thus, {4,B}* = {A4,B,C,D,E}. O

By computing the closure of any set of-attributes, we can test whether
any given FD Ay As--- A, — B follows from a set of FD’s S. First compute
{A1,As, ..., A, }T using the set of FD’s S. If B is in {4;, A2,...,4,}T, then
A1 As--- A, — B does follow from S, and if B is not in {4y, Az, ..., A}, then
this FD does not follow from S. More generally, AjAs--- A, = BBy -+ Bp,
follows from set of FD’s S if and only if all of By, Bs,... ,B,, are in

{A17A27' .- ,An}+

Example 3.9: Consider the relation and FD’s of Example 3.8. Suppose we
wish to test whether AB — D follows from these FD’s. We compute {4, B}™,
which is {A, B,C, D, E}, as we saw in that example. Since D is a member of
the closure, we conclude that AB — D does follow.

On the other hand, consider the FD D — A. To test whether this FD follows
from the given FD’s, first compute {D}*. To do so, we start with X = {D}.
We can use the FD D — E to add E to the set X. However, then we are stuck.
We cannot find any other FD whose left side is contained in X = {D, E}, so
{D}* = {D, E}. Since A is not a member of {D, E}, we conclude that D — A
does not follow. O

3.2.5 Why the Closure Algorithm Works

In this section, we shall show why Algorithm 3.7 correctly decides whether or
not an FD A;As .-+ A, — B follows from a given set of FD’s S. There are two
parts to the proof:

1. We must prove that Algorithm 3.7 does not claim too much. That is, we
must show that if A;As--- A, — B is asserted by the closure test (i.e.,



78 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Bisin {A1,As,... ,Ap}7), then A145--- A, — B holds in any relation
that satisfies all the FD’s in S.

2. We must prove that Algorithm 3.7 does not fail to discover a FD that
truly follows from the set of FD’s S.

Why the Closure Algorithm Claims only True FD’s

We can prove by induction on the number of times that we apply the growing
operation of Step 3 that for every attribute D in X, the FD A;4>--- A, = D
holds. That is, every relation R satisfying all of the FD’s in S also satisfies
A1A2"'An - D.

BASIS: The basis case is when there are zero steps. Then D must be one of
Ay, As, ..., Ay, and surely A; A --- A, — D holds in any relation, because it
is a trivial FD.

INDUCTION: For the induction, suppose D was added when we used the FD
B1B,---B,, = D of S. We know by the inductive hypothesis that R satisfies
AlAs---A, = B1Bs---By,. Now, suppose two tuples of R agree on all of
Aj,As,...,A,. Then since R satisfies A1 Ay--- A, — B1By--- By, the two
tuples must agree on all of By, Bs, ... ,By,. Since R satisfies B1By --- By, = D,
we also know these two tuples agree on D. Thus, R satisfies AjAs--- A, = D.

Why the Closure Algorithm Discovers All True FD’s

Suppose A; Ay - -+ A, = B were an FD that Algorithm 3.7 says does not follow
from set S. That is, the closure of {4;, Az, ..., An} using set of FD’s S does
not include B. We must show that FD A;As - -- A, — B really doesn’t follow
from S. That is, we must show that there is at least one relation instance that
satisfies all the FD’s in S, and yet does not satisfy A; Ay --- A, — B.

This instance I is actually quite simple to construct; it is shown in Fig. 3.5.
I has only two tuples: t and s. The two tuples agree in all the attributes
of {A;, Aa,... , A, and they disagree in all the other attributes. We must
show first that I satisfies all the FD’s of S, and then that it does not satisfy
A1A2"'An — B.

{A1,Az2,..., A}t Other Attributes
i 111 ---11 000 ---00
111 ---11 111---11

Figure 3.5: An instance I satisfying S but not A1 Az---A, = B

Suppose there were some FD C1Cs---Cy — D in set S (after splitting
right sides) that instance I does not satisfy. Since I has only two tuples, ¢
and s, those must be the two tuples that violate C;Cs---Cy — D. That is, ¢
and s agree in all the attributes of {C1,Cs,...,Ck}, yet disagree on D. If we



3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 79

examine Fig. 3.5 we see that all of C1,Cy, ... ,Cy must be among the attributes
of {A4;,As,...,An}T, because those are the only attributes on which ¢ and s
agree. Likewise, D must be among the other attributes, because only on those
attributes do ¢ and s disagree.

But then we did not compute the closure correctly. C;Cs --- Cr — D should
have been applied when X was {41, As,...,An} to add D to X. We conclude
that C1C5 ---C — D cannot exist; i.e., instance I satisfies S.

Second, we must show that I does not satisfy A; As--- A, — B. However,
this part is easy. Surely, A;, Ao, ..., A, are among the attributes on which ¢ and
s agree. Also, we know that B is not in {4, As,... ,4,}T, so B is one of the
attributes on which ¢ and s disagree. Thus, I does not satisfy 4; 45 --- A,, = B.
We conclude that Algorithm 3.7 asserts neither too few nor too many FD’s; it
asserts exactly those FD’s that do follow from S.

3.2.6 The Transitive Rule

The transitive rule lets us cascade two FD’s, and generalizes the observation of
Example 3.4.

o If A1A2An — Ble"-Bm and Ble"'Bm — 0102"'Ck hold in
relation R, then A1 As--- A, = C1Cs - -- O}, also holds in R.

If some of the C’s are among the A’s, we may eliminate them from the right
side by the trivial-dependencies rule.,

To see why the transitive rule holds, apply the test of Section 3.2.4. To
test whether A1 As --- A, = C1C5 - - - Cy, holds, we need to compute the closure
{A1, As,..., A} with respect to the two given FD’s.

The FD A;As--- A, = B1Bsy - -- By, tells us that all of By, Bs,..., B, are
in {4;,A4s,...,A,}". Then, we can use the FD B1By--- By, =& C1Ca-+-Ch
to add C1,Cs, ... ,Ck to {A1,A2,...,A,}T. Since all the C’s are in

{A1,42,..., A}

we conclude that A; 45 --- A, = C1C5 - - - C}, holds for any relation that satisfies
both AjAs -+ A, =+ B1By---By, and BiBy--- By, = C1Cy -+ Cy.

Example 3.10: Here is another version of the Movies relation that includes
both the studio of the movie and some information about that studio.

title | year | length | genre studioName | studioAddr
Star Wars 1977 | 124 sciFi | Fox Hollywood
Eight Below 20056 | 120 drama | Disney Buena Vista
Wayne’s World | 1992 | 95 comedy | Paramount | Hollywood

Two of the FD’s that we might reasonably claim to hold are:

title year — studioName
studioName — studioAddr



80 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Closures and Keys

Notice that {A;, 4a,...,An}T is the set of all attributes of a relation if
and only if Ay, As,..., A, is a superkey for the relation. For only then
does Aj, As,..., A, functionally determine all the other attributes. We

can test if A;, Az,...,A, is a key for a relation by checking first that
{A1, As, ..., A}t is all attributes, and then checking that, for no set X
formed by removing one attribute from {43, As,...,An}, is Xt the set
of all attributes.

The first is justified because there can be only one movie with a given title
and year, and there is only one studio that owns a given movie. The second is
justified because studios have unique addresses.

The transitive rule allows us to combine the two FD’s above to get a new
FD:

title year — studioAddr

This FD says that a title and year (i.e., a movie) determines an address — the
address of the studio owning the movie. O

3.2.7 Closing Sets of Functional Dependencies

Sometimes we have a choice of which FD’s we use to represent the full set of
FD’s for a relation. If we are given a set of FD’s S (such as the FD’s that hold
in a given relation), then any set of FD’s equivalent to S is said to be a basis
for S. To avoid some of the explosion of possible bases, we shall limit ourselves
to considering only bases whose FD’s have singleton right sides. If we have any
basis, we can apply the splitting rule to make the right sides be singletons. A
minimal basis for a relation is a basis B that satisfies three conditions:

1. All the FD’s in B have singleton right sides.
2. If any FD is removed from B, the result is no longer a basis.

3. If for any FD in B we remove one or more attributes from the left side of
F'| the result is no longer a basis.

Notice that no trivial FD can be in a minimal basis, because it could be removed
by rule (2).

Example 3.11: Consider a relation R(A, B,C) such that each attribute func-
tionally determines the other two attributes. The full set of derived FD’s thus
includes six FD’s with one attribute on the left and one on the right; A — B,
A—=>C,B—- A B - C,C — A, and C - B. It also includes the three



3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 81

A Complete Set of Inference Rules

If we want to know whether one FD follows from some given FD’s, the
closure computation of Section 3.2.4 will always serve. However, it is
interesting to know that there is a set of rules, called Armstrong’s azioms,
from which it is possible to derive any FD that follows from a given set.
These axioms are:

1. Reflexivity. If {By,Bs,...,Bn} C {A1,4s,...,A,}, then
AAy---A, = BiBy---B,,. These are what we have called triv-
ial FD’s.

2. Augmentation. If AjAs--- A, — B1By - By, then
A1A2---An0102---Ck — BlB2 ---Bm0102 Ck

for any set of attributes Cp,Cs,... ,Ck. Since some of the C’s may
also be A’s or B’s or both, we should eliminate from the left side
duplicate attributes and do the same for the right side.

3. Transitivity. If
AyAs---Ay, - B1By---B,, and B1Bs«-- By, - C1Cs---Cy,

then A1A45-- A, = C1Cy - Cy.

nontrivial FD’s with two attributes on the left: AB — C, AC — B, and
BC — A. There are also FD’s with more than one attribute on the right, such
as A —» BC, and trivial FD’s such as A — A.

Relation R and its FD’s have several minimal bases. One is

{A—+B, B> A, B—C, C- B}

Another is {A — B, B = C, C — A}. There are several other minimal bases
for R, and we leave their discovery as an exercise. O

3.2.8 Projecting Functional Dependencies

When we study design of relation schemas, we shall also have need to answer
the following question about FD’s. Suppose we have a relation R with set of
FD’s S, and we project R by computing R; = #1(R), for some list of attributes
R. What FD’s hold in R;?

The answer is obtained in principle by computing the projection of functional
dependencies S, which is all FD’s that:



82 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

a) Follow from S, and

b) Involve only attributes of R;.

Since there may be a large number of such FD’s, and many of them may be
redundant (i.e., they follow from other such FD’s), we are free to simplify that
set of FD’s if we wish. However, in general, the calculation of the FD’s for
R; is exponential in the number of attributes of R;. The simple algorithm is
summarized below.

Algorithm 3.12: Projecting a Set of Functional Dependencies.

INPUT: A relation R and a second relation R; computed by the projection
R; = nr(R). Also, a set of FD’s S that hold in R.

OUTPUT: The set of FD’s that hold in R;.

METHOD:

1. Let T be the eventual output set of FD’s. Initially, T is empty.

2. For each set of attributes X that is a subset of the attributes of Ry,
compute X+. This computation is performed with respect to the set of
FD’s S, and may involve attributes that are in the schema of R but not
R;. Add to T all nontrivial FD’s X — A such that A is both in X+ and
an attribute of R;.

3. Now, T is a basis for the FD’s that hold in R;, but may not be a minimal
basis. We may construct a minimal basis by modifying T as follows:

(a) If there is an FD F in T that follows from the other FD’s in T,
remove F from T'.

(b) Let Y — B be an FD in T', with at least two attributes in Y, and let
Z be Y with one of its attributes removed. If Z — B follows from
the FD’s in T' (including Y — B), then replace Y - B by Z — B.

(c) Repeat the above steps in all possible ways until no more changes to
T can be made.

O

Example 3.13: Suppose R(A,B,C,D) hasFD’sA -+ B,B — C,and C — D.
Suppose also that we wish to project out the attribute B, leaving a relation
R;(A,C, D). In principle, to find the FD’s for R;, we need to take the closure
of all eight subsets of {4,C, D}, using the full set of FD’s, including those
involving B. However, there are some obvious simplifications we can make.

¢ Closing the empty set and the set of all attributes cannot yield a nontrivial
FD.



3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 83

o If we already know that the closure of some set X is all attributes, then
we cannot discover any new FD’s by closing supersets of X.

Thus, we may start with the closures of the singleton sets, and then move
on to the doubleton sets if necessary. For each closure of a set X, we add the
FD X — E for each attribute E that is in X+ and in the schema of Ry, but
not in X.

First, {A}T = {A,B,C,D}. Thus, A —» C and A — D hold in R;. Note
that A — B is true in R, but makes no sense in R; because B is not an attribute
of R1 .

Next, we consider {C}* = {C, D}, from which we get the additional FD
C — D for R,. Since {D}* = {D}, we can add no more FD’s, and are done
with the singletons.

Since {A}* includes all attributes of Ry, there is no point in considering any
superset of {A}. The reason is that whatever FD we could discover, for instance
AC — D, follows from an FD with only A on the left side: A — D in this case.
Thus, the only doubleton whose closure we need to take is {C, D}* = {C, D}.
This observation allows us to add nothing. We are done with the closures, and
the FD’s we have discovered are A - C, A - D, and C — D.

If we wish, we can observe that A — D follows from the other two by
transitivity. Therefore a simpler, equivalent set of FD’s for Ry is A — C and
C — D. This set is, in fact, a minimal basis for the FD’s of B;. O

3.2.9 Exercises for Section 3.2

Exercise 3.2.1: Consider a relation with schema R(A,B,C,D) and FD’s
AB - C,C — D, and D — A.

a) What are all the nontrivial FD’s that follow from the given FD’s? You
should restrict yourself to FD’s with single attributes on the right side.

b) What are all the keys of R?
¢) What are all the superkeys for R that are not keys?

Exercise 3.2.2: Repeat Exercise 3.2.1 for the following schemas and sets of
FD’s:

i) S(A,B,C,D) with FD's A—» B, B— C, and B - D.
i) T(A, B,C, D) with FD's AB — C, BC —» D, CD - A, and AD — B.
i) U(A,B,C,D) with FD's A— B, B~ C, C — D, and D — A.

Exercise 3.2.3: Show that the following rules hold, by using the closure test
of Section 3.2.4.

a) Augmenting left sides. If AjAs--- A, — B is an FD, and C is another
attribute, then A; A5 --- A,C — B follows.



84 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

b) Full augmentation. If AjAs---A, — B is an FD, and C is another at-
tribute, then A;As---A,C — BC follows. Note: from this rule, the
“augmentation” rule mentioned in the box of Section 3.2.7 on “A Com-
plete Set of Inference Rules” can easily be proved.

c) Pseudotransitivity. Suppose FD’s AjAs--- A, — B1Bs--- By, and
CiCy---Cy—= D
hold, and the B’s are each among the C’s. Then
A1Ag - AENEy---E; = D

holds, where the E’s are all those of the C’s that are not found among
the B’s.

d) Addition. If FD’s A1 Ay--- A, - B1By--- By, and
C1Cy---Cy —)D1D2--'D]‘

hOld, then FD A1A2 T Anchg e Ck - BlBg s BmD1D2 s Dj also
holds. In the above, we should remove one copy of any attribute that
appears among both the A’s and C’s or among both the B’s and D’s.

! Exercise 3.2.4: Show that each of the following are not valid rules about FD’s
by giving example relations that satisfy the given FD’s (following the “if”) but
not the FD that allegedly follows (after the “then”).

a) If A — B then B — A.
b) f AB— C and A — C, then B - C.
¢c) fAB—>C,then A CorB—>C.

! Exercise 3.2.5: Show that if a relation has no attribute that is functionally
determined by all the other attributes, then the relation has no nontrivial FD’s
at all.

! Exercise 3.2.6: Let X and Y be sets of attributes. Show that if X C Y, then
Xt C Y, where the closures are taken with respect to the same set of FD’s.

! Exercise 3.2.7: Prove that (X 1)t = X .

! Exercise 3.2.8: We say a set of attributes X is closed (with respect to a given
set of FD’s) if X+ = X. Consider a relation with schema R(A, B,C, D) and an
unknown set of FD’s. If we are told which sets of attributes are closed, we can
discover the FD’s. What are the FD’s if:

a) All sets of the four attributes are closed.



3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 85

b) The only closed sets are § and {4, B,C, D}.
¢) The closed sets are §, {A,B}, and {4, B,C, D}.

! Exercise 3.2.9: Find all the minimal bases for the FD’s and relation of Ex-
ample 3.11.

! Exercise 3.2.10: Suppose we have relation R(A, B,C,D, E), with some set
of FD’s, and we wish to project those FD’s onto relation S(A4, B,C). Give the
FD’s that hold in S if the FD’s for R are:

a) AB—-DE, C—->E, D~ C,and E — A
b) A—»D,BD — E, AC =+ E, and DE — B.
¢) AB—»D,AC—-E,BC—+D,D— A,and E - B.
dy A-B,B—+C,C—»D,D— E,and E— A.
In each case, it is sufficient to give a minimal basis for the full set of FD’s of S.

1! Exercise 3.2.11: Show that if an FD F follows from some given FD’s, then
we can prove F from the given FD’s using Armstrong’s axioms (defined in the
box “A Complete Set of Inference Rules” in Section 3.2.7). Hint: Examine
Algorithm 3.7 and show how each step of that algorithm can be mimicked by
inferring some FD’s by Armstrong’s axioms.

3.3 Design of Relational Database Schemas

Careless selection of a relational database schema can lead to redundancy and
related anomalies. For instance, consider the relation in Fig. 3.2, which we
reproduce here as Fig. 3.6. Notice that the length and genre for Star Wars
and Wayne’s World are each repeated, once for each star of the movie. The
repetition of this information is redundant. It also introduces the potential for
several kinds of errors, as we shall see.

In this section, we shall tackle the problem of design of good relation schemas
in the following stages:

1. We first explore in more detail the problems that arise when our schema
is poorly designed.

2. Then, we introduce the idea of “decomposition,” breaking a relation
schema (set of attributes) into two smaller schemas.

3. Next, we introduce “Boyce-Codd normal form,” or “BCNF,” a condition
on a relation schema that eliminates these problems.

4. These points are tied together when we explain how to assure the BCNF
condition by decomposing relation schemas.



86 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

title | year | length | genre | studioName | starName
Star Wars 1977 | 124 SciFi Fox Carrie Fisher
Star Wars 1977 | 124 SciFi Fox Mark Hamill
Star Wars 1977 | 124 SciFi Fox Harrison Ford
Gone With the Wind | 1939 | 231 drama MGM Vivien Leigh
Wayne’s World 1992 | 95 comedy | Paramount Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Meyers

Figure 3.6: The relation Movies1 exhibiting anomalies

3.3.1 Anomalies

Problems such as redundancy that occur when we try to cram too much into a
single relation are called anomalies. The principal kinds of anomalies that we
encounter are:

1. Redundancy. Information may be repeated unnecessarily in several tuples.
Examples are the length and genre for movies in Fig. 3.6.

2. Update Anomalies. We may change information in one tuple but leave
the same information unchanged in another. For example, if we found
that Star Wars is really 125 minutes long, we might carelessly change the
length in the first tuple of Fig. 3.6 but not in the second or third tuples.
You might argue that one should never be so careless, but it is possible
to redesign relation Moviesl so that the risk of such mistakes does not
exist.

3. Deletion Anomalies. If a set of values becomes empty, we may lose other
information as a side effect. For example, should we delete Vivien Leigh
from the set of stars of Gone With the Wind, then we have no more stars
for that movie in the database. The last tuple for Gone With the Wind
in the relation Movies1 would disappear, and with it information that it
is 231 minutes long and a drama.

3.3.2 Decomposing Relations

The accepted way to eliminate these anomalies is to decompose relations. De-
composition of R involves splitting the attributes of R to make the schemas of
two new relations. After describing the decomposition process, we shall show
how to pick a decomposition that eliminates anomalies.

Given a relation R(A4,, Ao, ..., Ay), we may decompose R into two relations
S(Bi, Bs, ... ,Bn) and T(Cy,Cs,. .. ,Ct) such that:

1. {A1,As,... , A} = {B1,Ba, ... ,B} U {C1,Ch,... ,Ci}.

2. S=1g,,B,,....B.(R).



3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 87

3. T =70,.,0,,.. c0(R)-

Example 3.14: Let us decompose the Movies1 relation of Fig. 3.6. Our choice,
whose merit will be seen in Section 3.3.3, is to use:

1. A relation called Movies2, whose schema is all the attributes except for
starName.

2. A relation called Movies3, whose schema consists of the attributes title,
year, and starName.

The projection of Movies1 onto these two new schemas is shown in Fig, 3.7.
O

title | year | length | genre | studioName
Star Wars 1977 | 124 sciFi Fox
Gone With the Wind | 1939 | 231 drama | MGM
Wayne’s World 1992 | 95 comedy | Paramount

(b) The relation Movies2.

title | year | starName
Star Wars 1977 | Carrie Fisher
Star Wars 1977 | Mark Hamill
Star Wars 1977 | Harrison Ford
Gone With the Wind | 1939 | Vivien Leigh
Wayne’s World 1992 | Dana Carvey
Wayne’s World 1992 | Mike Meyers

(b) The relation Movies3.

Figure 3.7: Projections of relation Movies1

Notice how this decomposition eliminates the anomalies we mentioned in
Section 3.3.1. The redundancy has been eliminated; for example, the length
of each film appears only once, in relation Movies2. The risk of an update
anomaly is gone. For instance, since we only have to change the length of Star
Wars in one tuple of Movies2, we cannot wind up with two different lengths
for that movie.

Finally, the risk of a deletion anomaly is gone. If we delete all the stars
for Gone With the Wind, say, that deletion makes the movie disappear from
Movies3. But all the other information about the movie can still be found in
Movies2.



88 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

It might appear that Movies3 still has redundancy, since the title and year
of a movie can appear several times. However, these two attributes form a key
for movies, and there is no more succinct way to represent a movie. Moreover,
Movies3 does not offer an opportunity for an update anomaly. For instance, one
might suppose that if we changed to 2008 the year in the Carrie Fisher tuple,
but not the other two tuples for Star Wars, then there would be an update
anomaly. However, there is nothing in our assumed FD’s that prevents there
being a different movie named Star Wars in 2008, and Carrie Fisher may star
in that one as well. Thus, we do not want to prevent changing the year in one
Star Wars tuple, nor is such a change necessarily incorrect.

3.3.3 Boyce-Codd Normal Form

The goal of decomposition is to replace a relation by several that do not exhibit
anomalies. There is, it turns out, a simple condition under which the anomalies
discussed above can be guaranteed not to exist. This condition is called Boyce-
Codd normal form, or BCNF.

e A relation R is in BCNF if and only if: whenever there is a nontrivial FD
AyAy--- A, - B1B;--- By, for R, it is the case that {A;, As,... , A} is
a superkey for R.

That is, the left side of every nontrivial FD must be a superkey. Recall that
a superkey need not be minimal. Thus, an equivalent statement of the BCNF
condition is that the left side of every nontrivial FD must contain a key.

Example 3.15: Relation Moviesl, as in Fig. 3.6, is not in BCNF. To see why,
we first need to determine what sets of attributes are keys. We argued in Ex-
ample 3.2 why {title, year, starName} is a key. Thus, any set of attributes
containing these three is a superkey. The same arguments we followed in Ex-
ample 3.2 can be used to explain why no set of attributes that does not include
all three of title, year, and starName could be a superkey. Thus, we assert
that {title, year, starName} is the only key for Moviesl.
However, consider the FD

title year — length genre studioName

which holds in Movies1 according to our discussion in Example 3.2.

Unfortunately, the left side of the above FD is not a superkey. In particular,
we know that title and year do not functionally determine the sixth attribute,
starName. Thus, the existence of this FD violates the BCNF condition and tells
us Movies1 is not in BOCNF. O

Example 3.16: On the other hand, Movies2 of Fig. 3.7 is in BCNF. Since

title year — length genre studioName



3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 89

holds in this relation, and we have argued that neither title nor year by itself
functionally determines any of the other attributes, the only key for Movies2
is {title, year}. Moreover, the only nontrivial FD’s must have at least title
and year on the left side, and therefore their left sides must be superkeys. Thus,
Movies2is in BCNF. 0O

Example 3.17: We claim that any two-attribute relation is in BCNF. We
need to examine the possible nontrivial FD’s with a single attribute on the
right. There are not too many cases to consider, so let us consider them in
turn. In what follows, suppose that the attributes are A and B.

1. There are no nontrivial ¥D’s. Then surely the BCNF condition must hold,
because only a nontrivial FD can violate this condition. Incidentally, note
that {A, B} is the only key in this case.

2. A — B holds, but B - A does not hold. In this case, A is the only key,
and each nontrivial FD contains A on the left (in fact the left can only
be A). Thus there is no violation of the BCNF condition.

3. B - A holds, but A — B does not hold. This case is symmetric to
case (2).

4. Both A — B and B — A hold. Then both A and B are keys. Surely
any FD has at least one of these on the left, so there can be no BCNF
violation.

It is worth noticing from case (4) above that there may be more than one
key for a relation. Further, the BCNF condition only requires that some key be
contained in the left side of any nontrivial FD, not that all keys are contained in
the left side. Also observe that a relation with two attributes, each functionally
determining the other, is not completely implausible. For example, a company
may assign its employees unique employee ID’s and also record their Social
Security numbers. A relation with attributes empID and ssNo would have each
attribute functionally determining the other. Put another way, each attribute
is a key, since we don’t expect to find two tuples that agree on either attribute.
O

3.3.4 Decomposition into BCNF

By repeatedly choosing suitable decompositions, we can break any relation
schema into a collection of subsets of its attributes with the following important
properties:

1. These subsets are the schemas of relations in BCNF.

2. The data in the original relation is represented faithfully by the data in the
relations that are the result of the decomposition, in a sense to be made
precise in Section 3.4.1. Roughly, we need to be able to reconstruct the
original relation instance exactly from the decomposed relation instances.



90 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Example 3.17 suggests that perhaps all we have to do is break a relation schema
into two-attribute subsets, and the result is surely in BCNF. However, such
an arbitrary decomposition will not satisfy condition (2), as we shall see in
Section 3.4.1. In fact, we must be more careful and use the violating FD’s to
guide our decomposition.

The decomposition strategy we shall follow is to look for a nontrivial FD
AjAy---Ap = By Bs - -- By, that violates BCNF; i.e., {41, 42,... , A} isnot a
superkey. We shall add to the right side as many attributes as are functionally
determined by {A;, A,,...,A,}. This step is not mandatory, but it often
reduces the total amount of work done, and we shall include it in our algorithm.
Figure 3.8 illustrates how the attributes are broken into two overlapping relation
schemas. One is all the attributes involved in the violating FD, and the other
is the left side of the FD plus all the attributes not involved in the FD, i.e., all
the attributes except those B’s that are not A’s.

Figure 3.8: Relation schema decomposition based on a BCNF violation

Example 3.18: Consider our running example, the Movies1 relation of Fig.
3.6. We saw in Example 3.15 that

title year — length genre studioName

is a BONF violation. In this case, the right side already includes all the at-
tributes functionally determined by title and year, so we shall use this BCNF
violation to decompose Moviesl into:

1. The schema {title, year, length, genre, studioName} consisting of all
the attributes on either side of the FD.

2. The schema {title, year, starName} consisting of the left side of the FD
plus all attributes of Movies1 that do not appear in either side of the FD
(only starName, in this case).

Notice that these schemas are the ones selected for relations Movies2 and
Movies3 in Example 3.14. We observed in Example 3.16 that Movies2 is in
BCNF. Movies3 is also in BCNF; it has no nontrivial FD’s. O



3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 91

In Example 3.18, one judicious application of the decomposition rule is
enough to produce a collection of relations that are in BCNF. In general, that
is not the case, as the next example shows.

Example 3.19: Consider a relation with schema
{title, year, studioName, president, presAddr}

That is, each tuple of this relation tells about a movie, its studio, the president
of the studio, and the address of the president of the studio. Three FD’s that
we would assume in this relation are

title year — studioName
studioName — president
president — presAddr

By closing sets of these five attributes, we discover that {title, year} is the
only key for this relation. Thus the last two FD’s above violate BCNF'. Suppose
we choose to decompose starting with

studioName — president

First, we add to the right side of this functional dependency any other attributes
in the closure of studioName. That closure includes presAddr, so our final
choice of FD for the decomposition is:

studioName — president presAddr
The decomposition based on this FD yields the following two relation schemas.

{title, year, studioName}
{studioName, president, presAddr}

If we use Algorithm 3.12 to project FD’s, we determine that the FD’s for
the first relation has a basis:

title year — studioName

while the second has:

studioName — president
president — presAddr

The sole key for the first relation is {title, year}, and it is therefore in BCNF.
However, the second has {studioName} for its only key but also has the FD:

president — presAddr

which is a BCNF violation. Thus, we must decompose again, this time using
the above FD. The resulting three relation schemas, all in BCNF, are:



92 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

{title, year, studioName}
{studioName, president}
{president, presAddr}

0

In general, we must keep applying the decomposition rule as many times as
needed, until all our relations are in BCNF. We can be sure of ultimate success,
because every time we apply the decomposition rule to a relation R, the two
resulting schemas each have fewer attributes than that of R. As we saw in
Example 3.17, when we get down to two attributes, the relation is sure to be
in BCNF; often relations with larger sets of attributes are also in BCNF. The
strategy is summarized below.

Algorithm 3.20: BCNF Decomposition Algorithm.
INPUT: A relation Ry with a set of functional dependencies Sp.

OUTPUT: A decomposition of Ry into a collection of relations, all of which are
in BCNF.

METHOD: The following steps can be applied recursively to any relation R and
set of FD’s S. Initially, apply them with R = Rg and S = S;.

1. Check whether R is in BCNF. If so, nothing more needs to be done.
Return {R} as the answer.

2. If there are BCNF violations, let one be X — Y. Use Algorithm 3.7 to
compute Xt. Choose R; = X+t as one relation schema and let R have
attributes X and those attributes of R that are not in X+.

3. Use Algorithm 3.12 to compute the sets of FD’s for R; and Ry; let these
be S1 and Ss, respectively.

4. Recursively decompose R; and Ry using this algorithm. Return the union
of the results of these decompositions.

0O

3.3.5 Exercises for Section 3.3

Exercise 3.3.1: For each of the following relation schemas and sets of FD’s:
a) R(A,B,C,D) with FD’s AB —+ C,C — D, and D = A.
b) R(A,B,C,D) with FD’s B — C and B — D.
¢) R(A,B,C,D) with FD’s AB - C, BC - D, CD — A, and AD - B.
d) R(A,B,C,D) with FD’s A—» B, B—+C,C - D,and D = A.



3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 93

e) R(A,B,C,D,E) with FD’s AB - C, DE - C, and B — D.
f) R(4,B,C,D,E) withFD's AB—+C,C - D,D - B,and D = E.
do the following:

i) Indicate all the BCNF violations. Do not forget to consider FD’s that are
not in the given set, but follow from them. However, it is not necessary
to give violations that have more than one attribute on the right side.

ii) Decompose the relations, as necessary, into collections of relations that
are in BCNF.

Exercise 3.3.2: We mentioned in Section 3.3.4 that we would exercise our
option to expand the right side of an FD that is a BCNF violation if possible.
Consider a relation R whose schema is the set of attributes {A, B,C, D} with
FD’s A - B and A — C. Either is a BCNF violation, because the only key
for R is {A, D}. Suppose we begin by decomposing R according to A — B. Do
we ultimately get the same result as if we first expand the BCNF violation to
A — BC? Why or why not?

Exercise 3.3.3: Let R be as in Exercise 3.3.2, but let the FD’s be A — B and
B — C. Again compare decomposing using A — B first against decomposing
by A — BC first.

Exercise 3.3.4: Suppose we have a relation schema R(A, B,C) with FD A —
B. Suppose also that we decide to decompose this schema into S(A4, B) and
T(B,C). Give an example of an instance of relation E whose projection onto
S and T and subsequent rejoining as in Section 3.4.1 does not yield the same
relation instance. That is, 74, B(R) < 7p c(R) # R.

3.4 Decomposition: The Good, Bad, and Ugly

So far, we observed that before we decompose a relation schema into BCNF,
it can exhibit anomalies; after we decompose, the resulting relations do not
exhibit anomalies. That’s the “good.” But decomposition can also have some
bad, if not downright ugly, consequences. In this section, we shall consider
three distinct properties we would like a decomposition to have.

1. Elimination of Anomalies by decomposition as in Section 3.3.

2. Recoverability of Information. Can we recover the original relation from
the tuples in its decomposition?

3. Preservation of Dependencies. If we check the projected FD’s in the rela-
tions of the decomposition, can we can be sure that when we reconstruct
the original relation from the decomposition by joining, the result will
satisfy the original FD’s?



94 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

It turns out that the BCNF decomposition of Algorithm 3.20 gives us (1) and
(2), but does not necessarily give us all three. In Section 3.5 we shall see another
way to pick a decomposition that gives us (2) and (3) but does not necessarily
give us (1). In fact, there is no way to get all three at once.

3.4.1 Recovering Information from a Decomposition

Since we learned that every two-attribute relation is in BCNF, why did we
have to go through the trouble of Algorithm 3.207 Why not just take any
relation R and decompose it into relations, each of whose schemas is a pair of
R’s attributes? The answer is that the data in the decomposed relations, even
if their tuples were each the projection of a relation instance of R, might not
allow us to join the relations of the decomposition and get the instance of R
back. If we do get R back, then we say the decomposition has a lossless join.

However, if we decompose using Algorithm 3.20, where all decompositions
are motivated by a BCNF-violating FD, then the projections of the original
tuples can be joined again to produce all and only the original tuples. We shall
consider why here. Then, in Section 3.4.2 we shall give an algorithm called the
“chase,” for testing whether the projection of a relation onto any decomposition
allows us to recover the relation by rejoining.

To simplify the situation, consider a relation R(A4,B,C) and an FD B — C
that is a BCNF violation. The decomposition based on the FD B — C separates
the attributes into relations R; (4, B) and Ry (B,C).

Let ¢ be a tuple of R. We may write ¢t = (a, b, ¢), where a, b, and ¢ are the
components of ¢ for attributes A, B, and C, respectively. Tuple ¢ projects as
(a,b) in R1(A,B) = m4 p(R) and as (b,¢) in R(B,C) = np,c(R). When we
compute the natural join R; < Ry, these two projected tuples join, because
they agree on the common B component (they both have b there). They give
us t = (a,b,c), the tuple we started with, in the join. That is, regardless of
what tuple t we started with, we can always join its projections to get ¢ back.

However, getting back those tuples we started with is not enough to assure
that the original relation R is truly represented by the decomposition. Consider
what happens if there are two tuples of R, say t = (a,b,¢) and v = (d,b,e).
When we project t onto R; (A, B) we get u = (a,b), and when we project v onto
Ry(B,C) we get w = (b,e). These tuples also match in the natural join, and
the resulting tuple is z = (a, b, e). Is it possible that z is a bogus tuple? That
is, could (a, b, €) not be a tuple of R?

Since we assume the FD B — C for relation R, the answer is “no.” Recall
that this FD says any two tuples of R that agree in their B components must
also agree in their C' components. Since ¢ and v agree in their B components,
they also agree on their C components. That means ¢ = e; i.e., the two values
we supposed were different are really the same. Thus, tuple (a,b,e) of R is
really (a,b,c); that is, z = t.

Since ¢ is in R, it must be that z is in R. Put another way, as long as FD
B — C holds, the joining of two projected tuples cannot produce a bogus tuple.



3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 95

Rather, every tuple produced by the natural join is guaranteed to be a tuple of
R.

This argument works in general. We assumed A, B, and C were each
single attributes, but the same argument would apply if they were any sets
of attributes X, Y and Z. That is, if Y — Z holds in R, whose attributes are
X UY U Z, then R =nxyy(R) xzyuz(R).

We may conclude:

¢ If we decompose a relation according to Algorithm 3.20, then the original
relation can be recovered exactly by the natural join.

To see why, we argued above that at any one step of the recursive decomposition,
a relation is equal to the join of its projections onto the two components. If
those components are decomposed further, they can also be recovered by the
natural join from their decomposed relations. Thus, an easy induction on the
number of binary decomposition steps says that the original relation is always
the natural join of whatever relations it is decomposed into. We can also prove
that the natural join is associative and commutative, so the order in which we
perform the natural join of the decomposition components does not matter.

The FD Y — Z, or its symmetric FD Y — X is essential. Without one of
these FD’s, we might not be able to recover the original relation. Here is an
example.

Example 3.21: Suppose we have the relation R(A, B, C) as above, but neither
of the FD’s B — A nor B — C holds. Then R might consist of the two tuples

A|B|C
112 (3
4 12 |5

The projections of R onto the relations with schemas {4, B} and {B,C}
are Ry = map(R) =

A|B
1|2
4 12

and Ry = mpc(R) =

:

c
3

-

5

respectively. Since all four tuples share the same B-value, 2, each tuple of one
relation joins with both tuples of the other relation. When we try to reconstruct
R by the natural join of the projected relations, we get B3 = Ry a Ry =



96 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Is Join the Only Way to Recover?

We have assumed that the only possible way we could reconstruct a rela-
tion from its projections is to use the natural join. However, might there
be some other algorithm to reconstruct the original relation that would
work even in cases where the natural join fails? There is in fact no such
other way. In Example 3.21, the relations R and Rj3 are different instances,
yet have exactly the same projections onto {4, B} and {B, C'}, namely the
instances we called R; and R,, respectively. Thus, given R; and Rj, no
algorithm whatsoever can tell whether the original instance was R or Rs.

Moreover, this example is not unusual. Given any decomposition of
a relation with attributes X UY U Z into relations with schemas X UY
and Y U Z, where neither Y — X nor Y — Z holds, we can construct
an example similar to Example 3.21 where the original instance cannot be
determined from its projections.

Lo ] [N
wwwwm
mwqu

That is, we get “too much”; we get two bogus tuples, (1,2,5) and (4,2, 3), that
were not in the original relation R. O

3.4.2 The Chase Test for Lossless Join

In Section 3.4.1 we argued why a particular decomposition, that of R(A, B,C)
into {4, B} and {B,C}, with a particular FD, B — C, had a lossless join.
Now, consider a more general situation. We have decomposed relation R into
relations with sets of attributes S1,S2,...,S;. We have a given set of FD’s
F that hold in R. Is it true that if we project R onto the relations of the
decomposition, then we can recover R by taking the natural join of all these
relations? That is, is it true that mg, (R) > mg,(R) > - - - i< 7g, (R) = R? Three
important things to remember are:

e The natural join is associative and commutative. It does not matter in
what order we join the projections; we shall get the same relation as a
result. In particular, the result is the set of tuples ¢ such that for all
i = 1,2,...,k, t projected onto the set of attributes S; is a tuple in
TS; (R)



3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 97

e Any tuple ¢ in R is surely in wg, (R) > 7s, (R) < -+ < 7wg, (R). The
reason is that the projection of ¢ onto S; is surely in wg,(R) for each 14,
and therefore by our first point above, ¢ is in the result of the join.

e As a consequence, s, (R) < 7g,(R) <« - - > 7g, (R) = R when the FD’s
in F hold for R if and only if every tuple in the join is also in R. That is,
the membership test is all we need to verify that the decomposition has
a lossless join.

The chase test for a lossless join is just an organized way to see whether a
tuple ¢t in 75, (R) b ws, (R) &< - - - b4 7g, (R) can be proved, using the FD’s in
F, also to be a tuple in R. If ¢ is in the join, then there must be tuples in R,
say t1,ts,... ,tr, such that ¢ is the join of the projections of each ¢; onto the
set of attributes S;, for i = 1,2,... , k. We therefore know that ¢; agrees with ¢
on the attributes of S;, but ¢; has unknown values in its components not in ;.

We draw a picture of what we know, called a tableau. Assuming R has
attributes 4, B,... we use a,b,... for the components of ¢. For t;, we use the
same letter as t in the components that are in S;, but we subscript the letter
with ¢ if the component is not in 7. In that way, ¢; will agree with ¢ for the
attributes of S;, but have a unique value — one that can appear nowhere else
in the tableau — for other attributes.

Example 3.22: Suppose we have relation R(4, B,C, D), which we have de-
composed into relations with sets of attributes S; = {4, D}, S; = {4,C}, and
S3 = {B,C, D}. Then the tableau for this decomposition is shown in Fig. 3.9.

A|B|C|D
a b1 C1 d
a b2 C dz
az | b |ec | d

Figure 3.9: Tableau for the decomposition of R into {4, D}, {A,C}, and
{B,C,D}

The first row corresponds to set of attributes A and D. Notice that the
components for attributes A and D are the unsubscripted letters ¢ and d.
However, for the other attributes, b and ¢, we add the subscript 1 to indicate that
they are arbitrary values. This choice makes sense, since the tuple (a, by, c1,d)
represents a tuple of R that contributes to ¢ = (a, b, ¢, d) by being projected onto
{A, D} and then joined with other tuples. Since the B- and C-components of
this tuple are projected out, we know nothing yet about what values the tuple
had for those attributes.

Similarly, the second row has the unsubscripted letters in attributes A and
C, while the subscript 2 is used for the other attributes. The last row has the
unsubscripted letters in components for {B,C, D} and subscript 3 on a. Since



98 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

each row uses its own number as a subscript, the only symbols that can appear
more than once are the unsubscripted letters. O

Remember that our goal is to use the given set of FD’s F' to prove that ¢ is
really in R. In order to do so, we “chase” the tableau by applying the FD’s in
F to equate symbols in the tableau whenever we can. If we discover that one of
the rows is actually the same as ¢ (that is, the row becomes all unsubscripted
symbols), then we have proved that any tuple ¢ in the join of the projections
was actually a tuple of R.

To avoid confusion, when equating two symbols, if one of them is unsub-
scripted, make the other be the same. However, if we equate two symbols, both
with their own subscript, then you can change either to be the other. However,
remember that when equating symbols, you must change all occurrences of one
to be the other, not just some of the occurences.

Example 3.23: Let us continue with the decomposition of Example 3.22, and
suppose the given FD’s are A - B, B = C, and CD — A. Start with the
tableau of Fig. 3.9. Since the first two rows agree in their A-components, the FD
A — B tells us they must also agree in their B-components. That is, by = bs.
We can replace either one with the other, since they are both subscripted. Let
us replace by by b;. Then the resulting tableau is:

A|B|c|D
a b1 C1 d
a bl C d2
a3b C d

Now, we see that the first two rows have equal B-values, and so we may use
the FD B — C to deduce that their C-components, ¢; and ¢, are the same.
Since c is unsubscripted, we replace ¢; by ¢, leaving:

A|B|C|D
a b1 [ d
a bl c d2
as b [+ d

Next, we observe that the first and third rows agree in both columns C' and
D. Thus, we may apply the FD CD — A to deduce that these rows also have
the same A-value; that is, a = az. We replace as by a, giving us:

A|B|C|D
a |bi|c|d

ab10d2
a|lb |c|d




3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 99

At this point, we see that the last row has become equal to ¢, that is,
(a,b,¢,d). We have proved that if R satisfies the FD’s A — B, B — (, and
CD — A, then whenever we project onto {4, D}, {A4,C}, and {B,C,D} and
rejoin, what we get must have been in R. In particular, what we get is the same
as the tuple of R that we projected onto {B,C,D}. O

3.4.3 Why the Chase Works

There are two issues to address:

1. When the chase results in a row that matches the tuple ¢ (i.e., the tableau
is shown to have a row with all unsubscripted variables), why must the
join be lossless?

2. When, after applying FD’s whenever we can, we still find no row of all
unsubscripted variables, why must the join not be lossless?

Question (1) is easy to answer. The chase process itself is a proof that one
of the projected tuples from R must in fact be the tuple ¢ that is produced by
the join. We also know that every tuple in R is sure to come back if we project
and join. Thus, the chase has proved that the result of projection and join is
exactly R.

For the second question, suppose that we eventually derive a tableau without
an unsubscripted row, and that this tableau does not allow us to apply any of
the FD’s to equate any symbols. Then think of the tableau as an instance of the
relation R. It obviously satisfies the given FD’s, because none can be applied
to equate symbols. We know that the ¢th row has unsubscripted symbols in the
attributes of S;, the ith relation of the decomposition. Thus, when we project
this relation onto the S;’s and take the natural join, we get the tuple with all
unsubscripted variables. This tuple is not in R, so we conclude that the join is
not lossless.

Example 3.24: Consider the relation R(4, B,C, D) with the FD B — AD
and the proposed decomposition {4, B}, {B, C}, and {C, D}. Here is the initial
tableau:

A|B|C’|D
a |b

as b3 C d

When we apply the lone FD, we deduce that a = az and d; = d2. Thus, the
final tableau is:

A|B|C|D
a b C1 d1
a |b |ec |ds
as b3 C d




100 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

No more changes can be made because of the given FD’s, and there is no
row that is fully unsubscripted. Thus, this decomposition does not have a
lossless join. We can verify that fact by treating the above tableau as a relation
with three tuples. When we project onto {4, B}, we get {(a,b)}, (as,b3)}.
The projection onto {B,C} is {(b,¢1), (b,¢), (bs,c)}, and the projection onto
{C,D} is (c1,dv), (e,d1), (c,d)}. If we join the first two projections, we get
{(a,b,c1), (a,b,¢), (as,bs,c)}. Joining this relation with the third projection
gives {(aa ba C1, dl)7 ((1, ba ¢, dl)a (a7 b: G d): (a3a b37 ¢, d1)7 ((13, b3’ C, d)} Notice
that this join has two more tuples than R, and in particular it has the tuple
(a,b,¢,d), as it must. 0O

3.4.4 Dependency Preservation

We mentioned that it is not possible, in some cases, to decompose a relation into
BCNF relations that have both the lossless-join and dependency-preservation
properties. Below is an example where we need to make a tradeoff between
preserving dependencies and BNCF.

Example 3.25: Suppose we have a relation Bookings with attributes:

1. title, the name of a movie.
2. theater, the name of a theater where the movie is being shown.

3. city, the city where the theater is located.

The intent behind a tuple (m,t,¢) is that the movie with title m is currently
being shown at theater ¢ in city c.
We might reasonably assert the following FD’s:

theater — city
title city — theater

The first says that a theater is located in one city. The second is not obvious
but is based on the common practice of not booking a movie into two theaters
in the same city. We shall assert this FD if only for the sake of the example.
Let us first find the keys. No single attribute is a key. For example, title
is not a key because a movie can play in several theaters at once and in several
cities at once.? Also, theater is not a key, because although theater function-
ally determines city, there are multiscreen theaters that show many movies
at once. Thus, theater does not determine title. Finally, city is not a key
because cities usually have more than one theater and more than one movie

playing.

2In this example we assume that there are not two “current” movies with the same title,
even though we have previously recognized that there could be two movies with the same
title made in different years.



3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 101

On the other hand, two of the three sets of two attributes are keys. Clearly
{title, city} is a key because of the given FD that says these attributes
functionally determine theater.

It is also true that {theater, title} is a key, because its closure includes
city due to the given FD theater — city. The remaining pair of attributes,
city and theater, do not functionally determine title, because of multiscreen
theaters, and are therefore not a key. We conclude that the only two keys are

{title, city}
{theater, title}

Now we immediately see a BCNF violation. We were given functional de-
pendency theater — city, but its left side, theater, is not a superkey. We
are therefore tempted to decompose, using this BCNF-violating FD, into the
two relation schemas:

{theater, city}
{theater, title}

There is a problem with this decomposition, concerning the FD
title city—theater
There could be current relations for the decomposed schemas that satisfy the
FD theater — city (which can be checked in the relation {theater, city})
but that, when joined, yield a relation not satisfying title city—theater.

For instance, the two relations

theater | city
Guild ‘ Menlo Park

Park Menlo Park

and

theater | title

Guild | Antz
Park Antz

are permissible according to the FD’s that apply to each of the above relations,
but when we join them we get two tuples

theater| city I title
Guild | Menlo Park | Antz
Park Menlo Park | Antz

that violate the FD title city — theater. 0O



o

102 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

3.4.5 Exercises for Section 3.4

Exercise 3.4.1: Let R(A, B,C, D, E) be decomposed into relations with the
following three sets of attributes: {A, B,C}, {B,C, D}, and {A, C, E}. For each
of the following sets of FD’s, use the chase test to tell whether the decomposition
of R is lossless. For those that are not lossless, give an example of an instance
of R that returns more than R when projected onto the decomposed relations
and rejoined.

a) B— E and CE — A.

b) AC — E and BC — D.

¢) A»D,D— E,and B> D.
d) A-D,CD— E,and E — D.

Exercise 3.4.2: For each of the sets of FD’s in Exercise 3.4.1, are dependencies
preserved by the decomposition?

3.5 Third Normal Form

The solution to the problem illustrated by Example 3.25 is to relax our BCNF
requirement slightly, in order to allow the occasional relation schema, that can-
not be decomposed into BCNF relations without our losing the ability to check
the FD’s. This relaxed condition is called “third normal form.” In this section
we shall give the requirements for third normal form, and then show how to
do a decomposition in a manner quite different from Algorithm 3.20, in order
to obtain relations in third normal form that have both the lossless-join and
dependency-preservation properties.

3.5.1 Definition of Third Normal Form
A relation R is in third normal form (3NF) if:
o Whenever A1 A, --- A, = B1Bs--- B, is a nontrivial FD, either
{A1,Aq,... Ay}

is a superkey, or those of By, Bs, ... , B,, that are not among the A’s, are
each a member of some key (not necessarily the same key).

An attribute that is a member of some key is often said to be prime. Thus, the
3NF condition can be stated as “for each nontrivial FD, either the left side is a
superkey, or the right side consists of prime attributes only.”

Note that the difference between this 3NF condition and the BCNF condi-
tion is the clause “is a member of some key (i.e., prime).” This clause “excuses”
an FD like theater — city in Example 3.25, because the right side, city, is
prime.



3.5. THIRD NORMAL FORM 103

Other Normal Forms

If there is a “third normal form,” what happened to the first two “nor-
mal forms”? They indeed were defined, but today there is little use for
them. First normal form is simply the condition that every component
of every tuple is an atomic value. Second normal form is a less restrictive
verison of 3NF. There is also a “fourth normal form” that we shall meet
in Section 3.6.

3.5.2 The Synthesis Algorithm for 3NF Schemas

We can now explain and justify how we decompose a relation R into a set of
relations such that:

a) The relations of the decomposition are all in 3NF.
b) The decomposition has a lossless join.

¢) The decomposition has the dependency-preservation property.

Algorithm 3.26: Synthesis of Third-Normal-Form Relations With a Lossless
Join and Dependency Preservation.

INPUT: A relation R and a set F' of functional dependencies that hold for R.

OUTPUT: A decomposition of R into a collection of relations, each of which is
in 3NF. The decomposition has the lossless-join and dependency-preservation
properties.

METHOD: Perform the following steps:

1. Find a minimal basis for F, say G.

2. For each functional dependency X — A in G, use X A as the schema of
one of the relations in the decomposition.

3. If none of the relation schemas from Step 2 is a superkey for R, add
another relation whose schema is a key for R.

O

Example 3.27: Consider the relation R(4,B,C, D, E) with FD’s AB — C,
C — B, and A — D. To start, notice that the given FD’s are their own
minimal basis. To check, we need to do a bit of work. First, we need to verify
that we cannot eliminate any of the given dependencies. That is, we show,
using Algorithm 3.7, that no two of the FD’s imply the third. For example,
we must take the closure of {A, B}, the left side of the first FD, using only the



104 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

second and third FD’s, C — B and A — D. This closure includes D but not
C, so we conclude that the first FD AB — C is not implied by the second and
third FD’s. We get a similar conclusion if we try to drop the second or third
FD.

We must also verify that we cannot eliminate any attributes from a left
side. In this simple case, the only possibility is that we could eliminate A or
B from the first FD. For example, if we eliminate A, we would be left with
B — C. We must show that B — C is not implied by the three original FD’s,
AB - C, C = B, and A —» D. With these FD’s, the closure of {B} is just B,
so B — C does not follow. A similar conclusion is drawn if we try to drop B
from AB — C. Thus, we have our minimal basis.

We start the 3NF synthesis by taking the attributes of each FD as a relation
schema. That is, we get relations S1(4, B,(C), S2(B,C), and S3(A,D). It is
never necessary to use a relation whose schema is a proper subset of another
relation’s schema, so we can drop S..

We must also consider whether we need to add a relation whose schema is
a key. In this example, R has two keys: {4, B,E} and {4, C, E}, as you can
verify. Neither of these keys is a subset of the schemas chosen so far. Thus, we
must add one of them, say S4(A4, B, E). The final decomposition of R is thus
S1(4, B,C), S3(A, D), and S4(A4,B,E). O

3.5.3 Why the 3NF Synthesis Algorithm Works

We need to show three things: that the lossless-join and dependency-preser-
vation properties hold, and that all the relations of the decomposition are in
3NF.

1. Lossless Join. Start with a relation of the decomposition whose set of
attributes K is a superkey. Consider the sequence of FD’s that are used
in Algorithm 3.7 to expand K to become K+. Since K is a superkey,
we know K7 is all the attributes. The same sequence of FD applications
on the tableau cause the subscripted symbols in the row corresponding
to K to be equated to unsubscripted symbols in the same order as the
attributes were added to the closure. Thus, the chase test concludes that
the decomposition is lossless.

2. Dependency Preservation. Each FD of the minimal basis has all its at-
tributes in some relation of the decomposition. Thus, each dependency
can be checked in the decomposed relations.

3. Third Normal Form. If we have to add a relation whose schema is a key,
then this relation is surely in 3NF. The reason is that all attributes of this
relation are prime, and thus no violation of 3NF could be present in this
relation. For the relations whose schemas are derived from the FD’s of a
minimal basis, the proof that they are in 3NF is beyond the scope of this
book. The argument involves showing that a 3NF violation implies that
the basis is not minimal.



3.6. MULTIVALUED DEPENDENCIES 105

3.5.4 Exercises for Section 3.5

Exercise 3.5.1: For each of the relation schemas and sets of FD’s of Exer-
cise 3.3.1:

1) Indicate all the 3NF violations.

i) Decompose the relations, as necessary, into collections of relations that
are in 3NF.

Exercise 3.5.2: Consider the relation Courses(C,T,H, R, S,G), whose at-
tributes may be thought of informally as course, teacher, hour, room, student,
and grade. Let the set of FD’s for Courses be C -+ T, HR - C, HT — R,
HS — R, and CS — G. Intuitively, the first says that a course has a unique
teacher, and the second says that only one course can meet in a given room at
a given hour. The third says that a teacher can be in only one room at a given
hour, and the fourth says the same about students. The last says that students
get only one grade in a course.

a) What are all the keys for Courses?
b) Verify that the given FD’s are their own minimal basis.

c) Use the 3NF synthesis algorithm to find a lossless-join, dependency-pres-
erving decomposition of R into 3NF relations. Are any of the relations
not in BCNF?

Exercise 3.5.3: Consider arelation Stocks(B,0, I, S, Q, D), whose attributes
may be thought of informally as broker, office (of the broker), investor, stock,
quantity (of the stock owned by the investor), and dividend (of the stock). Let
the set of FD’s for Stocks be S - D, I = B, IS — @, and B — O. Repeat
Exercise 3.5.2 for the relation Stocks.

Exercise 3.5.4: Verify, using the chase, that the decomposition of Exam-
ple 3.27 has a lossless join.

!! Exercise 3.5.5: Suppose we modified Algorithm 3.20 (BNCF decomposition)

so that instead of decomposing a relation R whenever R was not in BCNF, we
only decomposed R if it was not in 3NF. Provide a counterexample to show that
this modified algorithm would not necessarily produce a 3NF decomposition
with dependency preservation.

3.6 Multivalued Dependencies

A “multivalued dependency” is an assertion that two attributes or sets of at-
tributes are independent of one another. This condition is, as we shall see,
a generalization of the notion of a functional dependency, in the sense that



106 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

every FD implies the corresponding multivalued dependency. However, there
are some situations involving independence of attribute sets that cannot be
explained as FD’s. In this section we shall explore the cause of multivalued
dependencies and see how they can be used in database schema design.

3.6.1 Attribute Independence and Its Consequent
Redundancy

There are occasional situations where we design a relation schema and find it is
in BCNF, yet the relation has a kind of redundancy that is not related to FD’s.
The most common source of redundancy in BCNF schemas is an attempt to
put two or more set-valued properties of the key into a single relation.

Example 3.28: In this example, we shall suppose that stars may have several
addresses, which we break into street and city components. The set of addresses
is one of the set-valued properties this relation will store. The second set-valued
property of stars that we shall put into this relation is the set of titles and years
of movies in which the star appeared. Then Fig. 3.10 is a typical instance of
this relation.

name street city title year
C. Fisher | 123 Maple St. | Hollywood | Star Wars 1977
C. Fisher | 5 Locust Ln. Malibu Star Wars 1977
C. Fisher | 123 Maple St. | Hollywood | Empire Strikes Back | 1980
C. Fisher | 5 Locust Ln. Malibu Empire Strikes Back | 1980
C. Fisher | 123 Maple St. | Hollywood | Return of the Jedi 1983
C. Fisher | 5 Locust Ln. Malibu Return of the Jedi 1983

Figure 3.10: Sets of addresses independent from movies

We focus in Fig. 3.10 on Carrie Fisher’s two hypothetical addresses and her
three best-known movies. There is no reason to associate an address with one
movie and not another. Thus, the only way to express the fact that addresses
and movies are independent properties of stars is to have each address appear
with each movie. But when we repeat address and movie facts in all combi-
nations, there is obvious redundancy. For instance, Fig. 3.10 repeats each of
Carrie Fisher’s addresses three times (once for each of her movies) and each
movie twice (once for each address).

Yet there is no BCNF violation in the relation suggested by Fig. 3.10. There
are, in fact, no nontrivial FD’s at all. For example, attribute city is not
functionally determined by the other four attributes. There might be a star
with two homes that had the same street address in different cities. Then there
would be two tuples that agreed in all attributes but city and disagreed in
city. Thus,



3.6. MULTIVALUED DEPENDENCIES 107

name street title year — city

is not an FD for our relation. We leave it to the reader to check that none of
the five attributes is functionally determined by the other four. Since there are
no nontrivial FD’s, it follows that all five attributes form the only key and that
there are no BCNF violations. 0O

3.6.2 Definition of Multivalued Dependencies

A multivelued dependency (abbreviated MVD) is a statement about some rela-
tion R that when you fix the values for one set of attributes, then the values in
certain other attributes are independent of the values of all the other attributes
in the relation. More precisely, we say the MVD

A1A2"'An—)->B1B2"'Bm

holds for a relation R if when we restrict ourselves to the tuples of R that have
particular values for each of the attributes among the A’s, then the set of values
we find among the B’s is independent of the set of values we find among the
attributes of R that are not among the A’s or B’s. Still more precisely, we say
this MVD holds if

For each pair of tuples ¢ and u of relation R that agree on all the
A’s, we can find in R some tuple v that agrees:

1. With both ¢ and u on the A’s,
2. With ¢ on the B’s, and

3. With u on all attributes of R that are not among the A’s or
B’s.

Note that we can use this rule with ¢ and « interchanged, to infer the existence
of a fourth tuple w that agrees with w on the B’s and with ¢ on the other
attributes. As a consequence, for any fixed values of the A’s, the associated
values of the B’s and the other attributes appear in all possible combinations
in different tuples. Figure 3.11 suggests how v relates to ¢ and 4 when an MVD
holds. However, the A’s and B’s to not have to appear consecutively.

In general, we may assume that the A’s and B’s (left side and right side) of
an MVD are disjoint. However, as with FD’s, it is permissible to add some of
the A’s to the right side if we wish.

Example 3.29: In Example 3.28 we encountered an MVD that in our notation
is expressed:

name —- street city

That is, for each star’s name, the set of addresses appears in conjunction with
each of the star’s movies. For an example of how the formal definition of this
MYVD applies, consider the first and fourth tuples from Fig. 3.10:



108 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

| ]
1 ] !
7*— B’s 7= Others —™
1 ] ] 1
1 1 ] t
T T
1
! 4 s b, : 4
1 1 ] 1
| 1 1 1
1 1 I i
] i
v a ) b, , [
+ I
1 I I i
1 ] I 1
1 1
I |
U al : b’Z : C2

Figure 3.11: A multivalued dependency guarantees that v exists

name | street | city | title | year

C. Fisher | 123 Maple St. | Hollywood | Star Wars 1977
C. Fisher | 5 Locust Ln. Malibu Empire Strikes Back | 1980

If we let the first tuple be ¢ and the second be u, then the MVD asserts
that we must also find in R the tuple that has name C. Fisher, a street and
city that agree with the first tuple, and other attributes (title and year) that
agree with the second tuple. There is indeed such a tuple; it is the third tuple
of Fig. 3.10.

Similarly, we could let ¢ be the second tuple above and u be the first. Then
the MVD tells us that there is a tuple of R that agrees with the second in
attributes name, street, and city and with the first in name, title, and year.
This tuple also exists; it is the second tuple of Fig. 3.10. O

3.6.3 Reasoning About Multivalued Dependencies

There are a number of rules about MVD’s that are similar to the rules we
learned for FD’s in Section 3.2. For example, MVD’s obey

e Trivial MVD’s. The MVD
A1A2"'An —)—)BIBQ"'Bm
holds in any relation if {B;, B2,... ,Bn} C {A1,42,... , A}

e The transitive rule, which says that if AjAs--- A, = B1By--- By, and
BBy -+ By, = C1Cs - - - C), hold for some relation, then so does

ArAg--- Ay =+ C1Cz - C

Any C’s that are also A’s must be deleted from the right side.



3.6. MULTIVALUED DEPENDENCIES 109

On the other hand, MVD’s do not obey the splitting part of the splitting/com-
bining rule, as the following example shows.

Example 3.30: Consider again Fig. 3.10, where we observed the MVD:
name —-> street city
If the splitting rule applied to MVD’s, we would expect
name — street
also to be true. This MVD says that each star’s street addresses are indepen-
dent of the other attributes, including city. However, that statement is false.

Consider, for instance, the first two tuples of Fig. 3.10. The hypothetical MVD
would allow us to infer that the tuples with the streets interchanged:

name | street | city | title | year
C. Fisher | 5 Locust Ln. | Hollywood | Star Wars | 1977
C. Fisher | 123 Maple St. | Malibu Star Wars | 1977

were in the relation. But these are not true tuples, because, for instance, the
home on 5 Locust Ln. is in Malibu, not Hollywood. O

However, there are several new rules dealing with MVD’s that we can learn.
e FD Promotion. Every FD is an MVD. That is, if
A1Az---A, - B1By - By,
then A1 Ay---A, = B1By - B,,.
To see why, suppose R is some relation for which the FD
A1A2---A, - B1By--- By,

holds, and suppose ¢ and u are tuples of R that agree on the A’s. To show
that the MVD A;A;---A, = B1Bs--- B, holds, we have to show that R
also contains a tuple v that agrees with ¢{ and u on the A’s, with ¢ on the B’s,
and with u on all other attributes. But v can be u. Surely u agrees with ¢ and
u on the A’s, because we started by assuming that these two tuples agree on
the A’s. The FD A1 A5--- A, — B1 By --- By, assures us that u agrees with ¢
on the B’s. And of course u agrees with itself on the other attributes. Thus,
whenever an FD holds, the corresponding MVD holds.

e Complementation Rule. If AyAs--- A, = B1By -+ By, is an MVD for
relation R, then R also satisfies A Ay --- A, —> C1Cs .- Cy, where the
C’s are all attributes of R not among the A’s and B’s.



110 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

That is, swapping the B’s between two tuples that agree in the A’s has the
same effect as swapping the C’s.

Example 3.31: Again consider the relation of Fig. 3.10, for which we asserted
the MVD:

name — street city
The complementation rule says that
name > title year

must also hold in this relation, because title and year are the attributes not
mentioned in the first MVD. The second MVD intuitively means that each star
has a set of movies starred in, which are independent of the star’s addresses.
[m]

An MVD whose right side is a subset of the left side is trivial — it holds
in every relation. However, an interesting consequence of the complementation
rule is that there are some other MVD’s that are trivial, but that look distinctly
nontrivial.

o More Trivial MVD’s. If all the attributes of relation R are
{AI,A27- .- 7An7BlyBQ; v aBm}
then A1 A2 ---A, & B;Bs---B,, holds in R.

To see why these additional trivial MVD’s hold, notice that if we take two
tuples that agree in A3, As,..., A, and swap their components in attributes
By, B,,...,By,, we get the same two tuples back, although in the opposite
order.

3.6.4 Fourth Normal Form

The redundancy that we found in Section 3.6.1 to be caused by MVD’s can be
eliminated if we use these dependencies for decomposition. In this section we
shall introduce a new normal form, called “fourth normal form.” In this normal
form, all nontrivial MVD’s are eliminated, as are all FD’s that violate BCNF.
As a result, the decomposed relations have neither the redundancy from FD’s
that we discussed in Section 3.3.1 nor the redundancy from MVD’s that we
discussed in Section 3.6.1.

The “fourth normal form” condition is essentially the BCNF condition, but
applied to MVD'’s instead of FD’s. Formally:

e A relation R is in fourth normal form (4NF) if whenever

A1A2"'An — B1By---Bp,



3.6. MULTIVALUED DEPENDENCIES 111

is a nontrivial MVD, {4;, Az, ..., A,} is a superkey.

That is, if a relation is in 4NF, then every nontrivial MVD is really an FD with
a superkey on the left. Note that the notions of keys and superkeys depend on
FD’s only; adding MVD’s does not change the definition of “key.”

Example 3.32: The relation of Fig. 3.10 violates the 4NF condition. For
example,

name —> street city

is a nontrivial MVD, yet name by itself is not a superkey. In fact, the only key
for this relation is all the attributes. O

Fourth normal form is truly a generalization of BCNF. Recall from Sec-
tion 3.6.3 that every FD is also an MVD. Thus, every BONF violation is also
a 4NF violation. Put another way, every relation that is in 4NF is therefore in
BCNF.

However, there are some relations that are in BCNF but not 4NF. Fig-
ure 3.10 is a good example. The only key for this relation is all five attributes,
and there are no nontrivial FD’s. Thus it is surely in BCNF. However, as we
observed in Example 3.32, it is not in 4NF.

3.6.5 Decomposition into Fourth Normal Form

The 4NF decomposition algorithm is quite analogous to the BCNF decomposi-
tion algorithm.

Algorithm 3.33: Decomposition into Fourth Normal Form.

INPUT: A relation Ry with a set of functional and multivalued dependencies
So.-

OUTPUT: A decomposition of Ry into relations all of which are in 4NF. The
decomposition has the lossless-join property.

METHOD: Do the following steps, with R = Ry and S = Sp:
1. Find a 4NF violation in R, say Ay As--- A, = B1Bs--- By,, where
{41, As, ..., An}

is not a superkey. Note this MVD could be a true MVD in S, or it could
be derived from the corresponding FD A;45---A,, = ByBs--- By, in S,
since every FD is an MVD. If there is none, return; R by itself is a suitable
decomposition.

2. If there is such a 4NF violation, break the schema for the relation R that
has the 4NF violation into two schemas:



112 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

(a) R;, whose schema is A’s and the B’s.

(b) Rz, whose schema is the A’s and all attributes of R that are not
among the A’s or B’s.

3. Find the FD’s and MVD’s that hold in R; and R, (Section 3.7 explains
how to do this task in general, but often this “projection” of dependencies
is straightforward). Recursively decompose R; and R; with respect to
their projected dependencies.

(m}
Example 3.34: Let us continue Example 3.32. We observed that
name — street city

was a 4NF violation. The decomposition rule above tells us to replace the
five-attribute schema by one schema that has only the three attributes in the
above MVD and another schema that consists of the left side, name, plus the
attributes that do not appear in the MVD. These attributes are title and
year, so the following two schemas

{name, street, city}
{name, title, year}

are the result of the decomposition. In each schema there are no nontrivial
multivalued (or functional) dependencies, so they are in 4NF. Note that in the
relation with schema {name, street, city}, the MVD:

name —- street city

is trivial since it involves all attributes. Likewise, in the relation with schema
{name, title, year}, the MVD:

name —> title year

is trivial. Should one or both schemas of the decomposition not be in 4NF, we
would have had to decompose the non-4NF schema(s). 0O

As for the BCNF decomposition, each decomposition step leaves us with
schemas that have strictly fewer attributes than we started with, so eventually
we get to schemas that need not be decomposed further; that is, they are
in 4NF. Moreover, the argument justifying the decomposition that we gave
in Section 3.4.1 carries over to MVD’s as well. When we decompose a relation
because of an MVD A4; 4y - -+ A, = By B; - - - By, this dependency is enough to
justify the claim that we can reconstruct the original relation from the relations
of the decomposition.

We shall, in Section 3.7, give an algorithm by which we can verify that the
MVD used to justify a 4NF decomposition also proves that the decomposition
has alossless join. Also in that section, we shall show how it is possible, although
time-consuming, to perform the projection of MVD’s onto the decomposed
relations. This projection is required if we are to decide whether or not further
decomposition is necessary.



3.6. MULTIVALUED DEPENDENCIES 113

3.6.6 Relationships Among Normal Forms

As we have mentioned, 4NF implies BCNF, which in turn implies 3NF. Thus,
the sets of relation schemas (including dependencies) satisfying the three normal
forms are related as in Fig. 3.12. That is, if a relation with certain dependen-
cies is in 4NF, it is also in BCNF and 3NF. Also, if a relation with certain
dependencies is in BCNF, then it is in 3NF.

Relations in 3NF

Relations in BCNF

Relations in 4NF

Figure 3.12: 4NF implies BCNF implies 3NF

Another way to compare the normal forms is by the guarantees they make
about the set of relations that result from a decomposition into that normal
form. These observations are summarized in the table of Fig. 3.13. That is,
BCNF (and therefore 4NF) eliminates the redundancy and other anomalies
that are caused by FD’s, while only 4NF eliminates the additional redundancy
that is caused by the presence of MVD’s that are not FD’s. Often, 3NF is
enough to eliminate this redundancy, but there are examples where it is not.
BCNF does not guarantee preservation of FD’s, and none of the normal forms
guarantee preservation of MVD’s, although in typical cases the dependencies
are preserved.

Property | 3NF | BCNF | 4NF |

Eliminates redundancy | No | Yes Yes
due to FD’s

Eliminates redundancy | No No Yes
due to MVD’s

Preserves FD’s | Yes | No No
Preserves MVD’s | No No No

Figure 3.13: Properties of normal forms and their decompositions

3.6.7 Exercises for Section 3.6
Exercise 3.6.1: Suppose we have a relation R(4, B,C) with an MVD A —



114 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES
B. If we know that the tuples (a,b1,c1), (a,b2,c2), and (a,bs,c3) are in the
current instance of R, what other tuples do we know must also be in R?

Exercise 3.6.2: Suppose we have a relation in which we want to record for
each person their name, Social Security number, and birthdate. Also, for each
child of the person, the name, Social Security number, and birthdate of the
child, and for each automobile the person owns, its serial number and make.
To be more precise, this relation has all tuples

(n, s,b,cn, cs, ch, as, am)
such that
1. n is the name of the person with Social Security number s.
2. b is n’s birthdate.
3. cn is the name of one of n’s children.
4. cs is cn’s Social Security number.
5. cb is cn’s birthdate.
6. as is the serial number of one of n’s automobiles.
7. am is the make of the automobile with serial number as.
For this relation:
a) Tell the functional and multivalued dependencies we would expect to hold.
b) Suggest a decomposition of the relation into 4NF.
Exercise 3.6.3: For each of the following relation schemas and dependencies
a) R(A,B,C,D) with MVD’s A =+ B and A —+ C.
b) R(A,B,C,D) with MVD’s A —+ B and B —+ CD.
¢) R(A,B,C,D) with MVD AB — C and FD B — D.

d) R(A,B,C,D, E) with MVD’s A =+ B and AB = C and FD’'s A + D
and AB - E.

do the following:
i) Find all the 4NF violations.
1) Decompose the relations into a collection of relation schemas in 4NF.

Exercise 3.6.4: Give informal arguments why we would not expect any of the
five attributes in Example 3.28 to be functionally determined by the other four.



3.7 AN ALGORITHM FOR DISCOVERING MVD’S 115

3.7 An Algorithm for Discovering MVD’s

Reasoning about MVD’s, or combinations of MVD’s and FD’s, is rather more
difficult than reasoning about FD’s alone. For FD’s, we have Algorithm 3.7 to
decide whether or not an FD follows from some given FD’s. In this section,
we shall first show that the closure algorithm is really the same as the chase
algorithm we studied in Section 3.4.2. The ideas behind the chase can be
extended to incorporate MVD’s as well as FD’s. Once we have that tool in
place, we can solve all the problems we need to solve about MVD’s and FD’s,
such as finding whether an MVD follows from given dependencies or projecting
MVD’s and FD’s onto the relations of a decomposition.

3.7.1 The Closure and the Chase

In Section 3.2.4 we saw how to take a set of attributes X and compute its
closure X+ of all attributes that functionally depend on X. In that manner, we
can test whether an FD X — Y follows from a given set of FD’s F', by closing
X with respect to F’ and seeing whether Y C X*. We could see the closure as
a variant of the chase, in which the starting tableau and the goal condition are
different from what we used in Section 3.4.2.

Suppose we start with a tableau that consists of two rows. These rows agree
in the attributes of X and disagree in all other attributes. If we apply the FD’s
in F to chase this tableau, we shall equate the symbols in exactly those columns
that are in X+ — X. Thus, a chase-based test for whether X — Y follows from
F' can be summarized as:

1. Start with a tableau having two rows that agree only on X.
2. Chase the tableau using the FD’s of F.

3. If the final tableau agrees in all columns of Y, then X — Y holds; other-
wise it does not.

Example 3.35: Let us repeat Example 3.8, where we had a relation
R(A,B,C,D,E,F)

with FD’s AB — C, BC — AD, D — E, and CF — B. We want to test
whether AB — D holds. Start with the tableau:

A|B|C|D|E|F
b dl fl
b dy fa

a
a

Ci
C2

€1
€2

We can apply AB — C to infer ¢; = cg; say both become ¢;. The resulting
tableau is:



116 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

A | B|C|D | E | F

b C1 d1 €1 f1

b C1 d2 €9 f2

Next, apply BC' — AD to infer that d; = ds, and apply D — E to infer

e; = eg. At this point, the tableau is:
A | B|C|D|E|F

b er1 | fi

b €1 f2

and we can go no further. Since the two tuples now agree in the D column, we
know that AB — D does follow from the given FD’s. O

a
a

a
a

c | dy
¢ | dy

3.7.2 Extending the Chase to MVD’s

The method of inferring an FD using the chase can be applied to infer MVD’s
as well. When we try to infer an FD, we are asking whether we can conclude
that two possibly unequal values must indeed be the same. When we apply an
FD X — Y, we search for pairs of rows in the tableau that agree on all the
columns of X, and we force the symbols in each column of Y to be equal.

However, MVD’s do not tell us to conclude symbols are equal. Rather,
X —» Y tells us that if we find two rows of the tableau that agree in X, then
we can form two new tuples by swapping all their components in the attributes
of Y; the resulting two tuples must also be in the relation, and therefore in
the tableau. Likewise, if we want to infer some MVD X —— Y from given
FD’s and MVD’s, we start with a tableau consisting of two tuples that agree
in X and disagree in all attributes not in the set X. We apply the given
FD’s to equate symbols, and we apply the given MVD’s to swap the values in
certain attributes between two existing rows of the tableau in order to add new
rows to the tableau. If we ever discover that one of the original tuples, with
its components for Y replaced by those of the other original tuple, is in the
tableau, then we have inferred the MVD.

There is a point of caution to be observed in this more complex chase pro-
cess. Since symbols may get equated and replaced by other symbols, we may
not recognize that we have created one of the desired tuples, because some of
the original symbols may be replaced by others. The simplest way to avoid a
problem is to define the target tuple initially, and never change its symbols.
That is, let the target row be one with an unsubscripted letter in each compo-
nent. Let the two initial rows of the tableau for the test of X —+ Y have the
unsubscripted letters in X. Let the first row also have unsubscripted letters in
Y, and let the second row have the unsubscripted letters in all attributes not
in X or Y. Fill in the other positions of the two rows with new symbols that
each occur only once. When we equate subscripted and unsubscripted symbols,
always replace a subscripted one by the unsubscripted one, as we did in Sec-
tion 3.4.2. Then, when applying the chase, we have only to ask whether the
all-unsubscripted-letters row ever appears in the tableau.



3.7. AN ALGORITHM FOR DISCOVERING MVD’S 117

Example 3.36: Suppose we have a relation R(A, B,C, D) with given depen-
dencies A —+ B and B — C. We wish to prove that A — C holds in R. Start
with the two-row tableau that represents A — C:

A|B|C|D
a |bi|le |d
a b 62d

Notice that our target row is (a,b,c,d). Both rows of the tableau have the
unsubscripted letter in the column for A. The first row has the unsubscripted
letter in C, and the second row has unsubscripted letters in the remaining
columns.

We first apply the FD A — B to infer that & = b;. We must therefore
replace the subscripted b; by the unsubscripted b. The tableau becomes:

A|B|lC|D
a b C d1
a | b le|d

Next, we apply the MVD B —+ (| since the two rows now agree in the B
column. We swap the C columns to get two more rows which we add to the
tableau, which becomes:

A|B|C|D
a |b e |dy
a b C2 d
a b C2 d1
al|b e |d

We have now a row with all unsubscripted symbols, which proves that A — C
holds in relation R. Notice how the tableau manipulations really give a proof
that A —» C holds. This proof is: “Given two tuples of R that agree in A,
they must also agree in B because A — B. Since they agree in B, we can swap
their C' components by B —+ C, and the resulting tuples will be in R. Thus, if
two tuples of R agree in A, the tuples that result when we swap their C’s are
alsoin R;ie, A— C” O

Example 3.37: There is a surprising rule for FD’s and MVD’s that says when-
ever there is an MVD X — Y, and any FD whose right side is a (not necessarily
proper) subset of Y, say Z, then X — Z. We shall use the chase process to
prove a simple example of this rule. Let us be given relation R(A, B, C, D) with
MVD A -+ BC and FD D — C. We claim that A — C.

Since we are trying to prove an FD, we don’t have to worry about a target
tuple of unsubscripted letters. We can start with any two tuples that agree in
A and disagree in every other column. such as:



118 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

A|B|C|D
a b1 C1 d1
a b2 Ca d2

Our goal is to prove that ¢; = ¢5.

The only thing we can do to start is to apply the MVD A — BC, since
the two rows agree on A, but no other columns. When we swap the B and C
columns of these two rows, we get two new rows to add:

A|B|C|D
a b1 1 d1
b2 C2 d2

e 2 8
o
o
(o]
N
U
fin

Now, we have pairs of rows that agree in D, so we can apply the FD D — C.
For instance, the first and third rows have the same D-value d;, so we can apply
the FD and conclude ¢; = ¢o. That is our goal, so we have proved A —+ C. The
new tableau is:

A|B|C]|D
a b1 Cy d1
a b2 Cy d2
a b2 (5] d1
a b1 (5] d2

It happens that no further changes are possible, using the given dependencies.
However, that doesn’t matter, since we already proved what we need. [

3.7.3 Why the Chase Works for MVD’s

The arguments are essentially the same as we have given before. Each step of the
chase, whether it equates symbols or generates new rows, is a true observation
about tuples of the given relation R that is justified by the FD or MVD that
we apply in that step. Thus, a positive conclusion of the chase is always a proof
that the concluded FD or MVD holds in R.

When the chase ends in failure — the goal row (for an MVD) or the desired
equality of symbols (for an FD) is not produced — then the final tableau is a
counterexample. It satisfies the given dependencies, or else we would not be
finished making changes. However, it does not satisfy the dependency we were
trying to prove.

There is one other issue that did not come up when we performed the chase
using only FD’s. Since the chase with MVD’s adds rows to the tableau, how
do we know we ever terminate the chase? Could we keep adding rows forever,
never reaching our goal, but not sure that after a few more steps we would
achieve that goal? Fortunately, that cannot happen. The reason is that we



3.7. AN ALGORITHM FOR DISCOVERING MVD’S 119

never create any new symbols. We start out with at most two symbols in each
of k columns, and all rows we create will have one of these two symbols in its
component for that column. Thus, we cannot ever have more than 2* rows in
our tableau, if k is the number of columns. The chase with MVD’s can take
exponential time, but it cannot run forever.

3.7.4 Projecting MVD’s

Recall that our reason for wanting to infer MVD’s was to perform a cascade of
decompositions leading to 4NF relations. To do that task, we need to be able
to project the given dependencies onto the schemas of the two relations that
we get in the first step of the decomposition. Only then can we know whether
they are in 4NF or need to be decomposed further.

In the worst case, we have to test every possible FD and MVD for each of
the decomposed relations. The chase test is applied on the full set of attributes
of the original relation. However, the goal for an MVD is to produce a row
of the tableau that has unsubscripted letters in all the attributes of one of
the relations of the decomposition; that row may have any letters in the other
attributes. The goal for an FD is the same: equality of the symbols in a given
column.

Example 3.38: Suppose we have a relation R(A, B,C, D, E) that we decom-
pose, and let one of the relations of the decomposition be S(A, B, C). Suppose
that the MVD A —» CD holds in R. Does this MVD imply any dependency
in S?7 We claim that A —» C holds in S, as does A —+ B (by the comple-
mentation rule). Let us verify that A —+ C holds in S. We start with the
tableau:

A|B|C|D|E
a b1c d1 €1
a |b |e|d |e

Use the MVD of R, A = CD to swap the C and D components of these two
rows to get two new rows:

A|B|lC|D|E
a b1 C dl (]
a |b |e|d |e
a b1 C2 d €1
a b |c |di|e

Notice that the last row has unsubscripted symbols in all the attributes of .S,
that is, A, B, and C. That is enough to conclude that A — C holdsin §. O

Often, our search for FD’s and MVD’s in the projected relations does not
have to be completely exhaustive. Here are some simplifications.



120 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

1. It is surely not necessary to check the trivial FD’s and MVD’s.

2. For FD’s, we can restrict ourselves to looking for FD’s with a singleton
right side, because of the combining rule for FD’s.

3. An FD or MVD whose left side does not contain the left side of any given
dependency surely cannot hold, since there is no way for its chase test
to get started. That is, the two rows with which you start the test are
unchanged by the given dependencies.

3.7.5 Exercises for Section 3.7

Exercise 3.7.1: Use the chase test to tell whether each of the following depen-
dencies hold in a relation R(A, B,C, D, E) with the dependencies A =+ BC,
B— D/ and C - E.

a) A—> D.
b) A —+ D.
c) A= E.
d)y A— E.

! Exercise 3.7.2: If we project the relation R of Exercise 3.7.1 onto S(4, C, E),
what nontrivial FD’s and MVD’s hold in S?

! Exercise 3.7.3: Show the following rules for MVD’s. In each case, you can
set up the proof as a chase test, but you must think a little more generally than
in the examples, since the set of attributes are arbitrary sets X, Y, Z, and the
other unnamed attributes of the relation in which these dependencies hold.

a) The Union Rule. If X, Y, and Z are sets of attributes, X —— Y, and
X+ Z,then X — (Y U Z).

b) The Intersection Rule. If X, Y, and Z are sets of attributes, X -+ Y,
and X -+ Z, then X - (Y n Z).

c¢) The Difference Rule. If X,Y, and Z are sets of attributes, X -+ Y, and
X = Z,then X - (Y - Z).

d) Removing attributes shared by left and right side. If X — Y holds, then
X =+ (Y — X) holds.

! Exercise 3.7.4: Give counterexample relations to show why the following rules
for MVD’s do not hold. Hint: apply the chase test and see what happens.

a) If A—» BC, then A - B.
b) If A —» B, then A — B.
c) If AB - C, then A - C.



3.8. SUMMARY OF CHAPTER 3 121

3.8
*

Summary of Chapter 3

Functional Dependencies: A functional dependency is a statement that
two tuples of a relation that agree on some particular set of attributes
must also agree on some other particular set of attributes.

Keys of a Relation: A superkey for a relation is a set of attributes that
functionally determines all the attributes of the relation. A key is a su-
perkey, no proper subset of which is also a superkey.

Reasoning About Functional Dependencies: There are many rules that let
us infer that one FD X — A holds in any relation instance that satisfies
some other given set of FD’s. To verify that X — A holds, compute the
closure of X, using the given FD’s to expand X until it includes A.

Minimal Basis for a set of FD’s: For any set of FD’s, there is at least
one minimal basis, which is a set of FD’s equivalent to the original (each
set implies the other set), with singleton right sides, no FD that can be
eliminated while preserving equivalence, and no attribute in a left side
that can be eliminated while preserving equivalence.

Boyce-Codd Normal Form: A relation is in BCNF if the only nontrivial
FD’s say that some superkey functionally determines one or more of the
other attributes. A major benefit of BCNF is that it eliminates redun-
dancy caused by the existence of FD’s.

Lossless-Join Decomposition: A useful property of a decomposition is that
the original relation can be recovered exactly by taking the natural join of
the relations in the decomposition. Any decomposition gives us back at
least the tuples with which we start, but a carelessly chosen decomposition
can give tuples in the join that were not in the original relation.

Dependency-Preserving Decomposition: Another desirable property of a
decomposition is that we can check all the functional dependencies that
hold in the original relation by checking FD’s in the decomposed relations.

Third Normal Form: Sometimes decomposition into BCNF can lose the
dependency-preservation property. A relaxed form of BCNF, called 3NF,
allowsan FD X — A evenif X is not a superkey, provided A4 is a member
of some key. 3NF does not guarantee to eliminate all redundancy due to
FD’s, but often does so.

The Chase: We can test whether a decomposition has the lossless-join
property by setting up a tableau — a set of rows that represent tuples of
the original relation. We chase a tableau by applying the given functional
dependencies to infer that certain pairs of symbols must be the same. The
decomposition is lossless with respect to a given set of FD’s if and only if
the chase leads to a row identical to the tuple whose membership in the
join of the projected relations we assumed.



122 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

4 Synthesis Algorithm for SNF': If we take a minimal basis for a given set
of FD’s, turn each of these FD’s into a relation, and add a key for the
relation, if necessary, the result is a decomposition into 3NF that has the
lossless-join and dependency-preservation properties.

4+ Multivalued Dependencies: A multivalued dependency is a statement that
two sets of attributes in a relation have sets of values that appear in all
possible combinations.

4 Fourth Normal Form: MVD’s can also cause redundancy in a relation.
4NF is like BCNF, but also forbids nontrivial MVD’s whose left side is
not a superkey. It is possible to decompose a relation into 4NF without
losing information.

4 Reasoning About MVD’s: We can infer MVD’s and FD’s from a given set
of MVD’s and FD’s by a chase process. We start with a two-row tableau
that represent the dependency we are trying to prove. FD’s are applied by
equating symbols, and MVD’s are applied by adding rows to the tableau
that have the appropriate components interchanged.

3.9 References for Chapter 3

Third normal form was described in [6]. This paper introduces the idea of
functional dependencies, as well as the basic relational concept. Boyce-Codd
normal form is in a later paper [7].

Multivalued dependencies and fourth normal form were defined by Fagin in
[9]. However, the idea of multivalued dependencies also appears independently
in [8] and [11].

Armstrong was the first to study rules for inferring FD’s [2]. The rules for
FD’s that we have covered here (including what we call “Armstrong’s axioms”)
and rules for inferring MVD’s as well, come from [3].

The technique for testing an FD by computing the closure for a set of at-
tributes is from [4], as is the fact that a minimal basis provides a 3NF de-
composition. The fact that this decomposition provides the lossless-join and
dependency-preservation propoerties is from [5].

The tableau test for the lossless-join property and the chase are from [1].
More information and the history of the idea is found in [10].

1. A. V. Aho, C. Beeri, and J. D. Ullman, “The theory of joins in relational
databases,” ACM Transactions on Database Systems 4:3, pp. 297-314,
1979.

2. W. W. Armstrong, “Dependency structures of database relationships,”
Proceedings of the 1974 IFIP Congress, pp. 580-583.



3.9.

10.

11.

REFERENCES FOR CHAPTER 3 123

. C. Beeri, R. Fagin, and J. H. Howard, “A complete axiomatization for

functional and multivalued dependencies,” ACM SIGMOD Intl. Conf. on
Management of Data, pp. 47-61, 1977.

. P. A. Bernstein, “Synthesizing third normal form relations from functional

dependencies,” ACM Transactions on Database Systems 1:4, pp. 277298,
1976.

. J. Biskup, U. Dayal, and P. A. Bernstein, “Synthesizing independent

database schemas,” ACM SIGMOD Intl. Conf. on Management of Data,
pp. 143-152, 1979.

. E. F. Codd, “A relational model for large shared data banks,” Comm.

ACM 13:6, pp. 377-387, 1970.

. E. F. Codd, “Further normalization of the data base relational model,” in

Database Systems (R. Rustin, ed.), Prentice-Hall, Englewood Cliffs, NJ,
1972.

. C. Delobel, “Normalization and hierarchical dependencies in the relational

data model,” ACM Transactions on Database Systems 3:3, pp. 201-222,
1978.

. R. Fagin, “Multivalued dependencies and a new normal form for relational

databases,” ACM Transactions on Database Systems 2:3, pp. 262-278,
1977.

J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol-
ume I, Computer Science Press, New York, 1988.

C. Zaniolo and M. A. Melkanoff, “On the design of relational database
schemata,” ACM Transactions on Database Systems 6:1, pp. 1-47, 1981.






Chapter 4

High-Level Database
Models

Let us consider the process whereby a new database, such as our movie database,
is created. Figure 4.1 suggests the process. We begin with a design phase, in
which we address and answer questions about what information will be stored,
how information elements will be related to one another, what constraints such
as keys or referential integrity may be assumed, and so on. This phase may last
for a long time, while options are evaluated and opinions are reconciled. We
show this phase in Fig. 4.1 as the conversion of ideas to a high-level design.

. Relational Relational
Ideas — » nghfLevel o Database ___ | clationa
Design Schema DBMS

Figure 4.1: The database modeling and implementation process

Since the great majority of commercial database systems use the relational
model, we might suppose that the design phase should use this model too.
However, in practice it is often easier to start with a higher-level model and
then convert the design to the relational model. The primary reason for doing so
is that the relational model has only one concept — the relation -— rather than
several complementary concepts that more closely model real-world situations.
Simplicity of concepts in the relational model is a great strength of the model,
especially when it comes to efficient implementation of database operations.
Yet that strength becomes a weakness when we do a preliminary design, which
is why it often is helpful to begin by using a high-level design model.

There are several options for the notation in which the design is expressed.
The first, and oldest, method is the “entity-relationship diagram,” and here is
where we shall start in Section 4.1. A more recent trend is the use of UML
(“Unified Modeling Language”), a notation that was originally designed for

125



126 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

describing object-oriented software projects, but which has been adapted to de-
scribe database schemas as well. We shall see this model in Section 4.7. Finally,
in Section 4.9, we shall consider ODL (“Object Description Language”), which
was created to describe databases as collections of classes and their objects.

The next phase shown in Fig. 4.1 is the conversion of our high-level design
to a relational design. This phase occurs only when we are confident of the
high-level design. Whichever of the high-level models we use, there is a fairly
mechanical way of converting the high-level design into a relational database
schema, which then runs on a conventional DBMS. Sections 4.5 and 4.6 discuss
conversion of E/R diagrams to relational database schemas. Section 4.8 does
the same for UML, and Section 4.10 serves for ODL.

4.1 The Entity /Relationship Model

In the entity-relationship model (or E/R model). the structure of data is rep-
resented graphically, as an “entity-relationship diagram,” using three principal
element types:

1. Entity sets,
2. Attributes, and

3. Relationships.

We shall cover each in turn.

4.1.1 Entity Sets

An entity is an abstract object of some sort, and a collection of similar entities
forms an entity set. An entity in some ways resembles an “object” in the sense of
object-oriented programming. Likewise, an entity set bears some resemblance
to a class of objects. However, the E/R model is a static concept, involving the
structure of data and not the operations on data. Thus, one would not expect
to find methods associated with an entity set as one would with a class.

Example 4.1: Let us consider the design of our running movie-database ex-
ample. Each movie is an entity, and the set of all movies constitutes an entity
set. Likewise, the stars are entities, and the set of stars is an entity set. A
studio is another kind of entity, and the set of studios is a third entity set that
will appear in our examples. O

4.1.2 Attributes

Entity sets have associated attributes, which are properties of the entities in
that set. For instance, the entity set Movies might be given attributes such
as title and length. It should not surprise you if the attributes for the entity



4.1. THE ENTITY/RELATIONSHIP MODEL 127

E/R Model Variations
In some versions of the E/R model, the type of an attribute can be either:

1. A primitive type, as in the version presented here.

2. A “struct,” as in C, or tuple with a fixed number of primitive com-
ponents.

3. A set of values of one type: either primitive or a “struct” type.

For example, the type of an attribute in such a model could be a set of
pairs, each pair consisting of an integer and a string.

set Movies resemble the attributes of the relation Movies in our example. It
is common for entity sets to be implemented as relations, although not every
relation in our final relational design will come from an entity set.

In our version of the E/R model, we shall assume that attributes are of
primitive types, such as strings, integers, or reals. There are other variations of
this model in which attributes can have some limited structure; see the box on
“E/R Model Variations.”

4.1.3 Relationships

Relationships are connections among two or more entity sets. For instance,
if Movies and Stars are two entity sets, we could have a relationship Stars-in
that connects movies and stars. The intent is that a movie entity m is related
to a star entity s by the relationship Stars-in if s appears in movie m. While
binary relationships, those between two entity sets, are by far the most common
type of relationship, the E/R model allows relationships to involve any number
of entity sets. We shall defer discussion of these multiway relationships until
Section 4.1.7.

4.1.4 Entity-Relationship Diagrams

An E/R diagram is a graph representing entity sets, attributes, and relation-
ships. Elements of each of these kinds are represented by nodes of the graph,
and we use a special shape of node to indicate the kind, as follows:

e Entity sets are represented by rectangles.
e Attributes are represented by ovals.

¢ Relationships are represented by diamonds.



128 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Edges connect an entity set to its attributes and also connect a relationship to
its entity sets.

Example 4.2: In Fig. 4.2 is an E/R diagram that represents a simple database
about movies. The entity sets are Movies, Stars, and Studios.

name address

- @ G

Movies

Studios

Figure 4.2: An entity-relationship diagram for the movie database

The Movies entity set has four of our usual attributes: title, year, length,
and genre. The other two entity sets Stars and Studios happen to have the
same two attributes: name and address, each with an obvious meaning. We
also see two relationships in the diagram:

1. Stars-inis a relationship connecting each movie to the stars of that movie.
This relationship consequently also connects stars to the movies in which
they appeared.

2. Owns connects each movie to the studio that owns the movie. The arrow
pointing to entity set Studios in Fig. 4.2 indicates that each movie is
owned by at most one studio. We shall discuss uniqueness constraints
such as this one in Section 4.1.6.

a

4.1.5 Instances of an E/R Diagram

E/R diagrams are a notation for describing schemas of databases. We may
imagine that a database described by an E/R diagram contains particular data,
an “instance” of the database. Since the database is not implemented in the
E/R model, only designed, the instance never exists in the sense that a relation’s



4.1. THE ENTITY/RELATIONSHIP MODEL 129

instances exist in a DBMS. However, it is often useful to visualize the database
being designed as if it existed.

For each entity set, the database instance will have a particular finite set
of entities. Each of these entities has particular values for each attribute. A
relationship R that connects n entity sets E;, Ea,... , E, may be imagined to
have an “instance” that consists of a finite set of tuples (e, es,... ,e,), where
each e; is chosen from the entities that are in the current instance of entity set
E;. We regard each of these tuples as “connected” by relationship R.

This set of tuples is called the relationship set for R. It is often helpful to
visualize a relationship set as a table or relation. However, the “tuples” of a
relationship set are not really tuples of a relation, since their components are
entities rather than primitive types such as strings or integers. The columns of
the table are headed by the names of the entity sets involved in the relationship,
and each list of connected entities occupies one row of the table. As we shall
see, however, when we convert relationships to relations, the resulting relation
is not the same as the relationship set.

Example 4.3: An instance of the Stars-in relationship could be visualized as
a table with pairs such as:

Movies ‘ Stars

Basic Instinct | Sharon Stone
Total Recall Arnold Schwarzenegger
Total Recall Sharon Stone

The members of the relationship set are the rows of the table. For instance,
(Basic Instinct, Sharon Stone) is a tuple in the relationship set for the current
instance of relationship Stars-in. 0O

4.1.6 Multiplicity of Binary E/R Relationships

In general, a binary relationship can connect any member of one of its entity
sets to any number of members of the other entity set. However, it is common
for there to be a restriction on the “multiplicity” of a relationship. Suppose R
is a relationship connecting entity sets E and F. Then:

o If each member of E can be connected by R to at most one member of F,
then we say that R is many-one from E to F. Note that in a many-one
relationship from F to F, each entity in F' can be connected to many
members of E. Similarly, if instead a member of F' can be connected by
R to at most one member of E, then we say R is many-one from F to E
(or equivalently, one-many from E to F).

e If R is both many-one from E to F' and many-one from F to F, then we
say that R is one-one. In a one-one relationship an entity of either entity
set can be connected to at most one entity of the other set.



130 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

e If R is neither many-one from E to F or from F to E, then we say R is
many-many.

As we mentioned in Example 4.2, arrows can be used to indicate the multi-
plicity of a relationship in an E/R diagram. If a relationship is many-one from
entity set E to entity set F, then we place an arrow entering F. The arrow
indicates that each entity in set E is related to at most one entity in set F.
Unless there is also an arrow on the edge to E, an entity in F' may be related
to many entities in F.

Example 4.4: A one-one relationship between entity sets E and F is repre-
sented by arrows pointing to both E and F. For instance, Fig. 4.3 shows two
entity sets, Studios and Presidents, and the relationship Runs between them
(attributes are omitted). We assume that a president can run only one studio
and a studio has only one president, so this relationship is one-one, as indicated
by the two arrows, one entering each entity set.

Studios Presidents

Figure 4.3: A one-one relationship

Remember that the arrow means “at most one”; it does not guarantee ex-
istence of an entity of the set pointed to. Thus, in Fig. 4.3, we would expect
that a “president” is surely associated with some studio; how could they be a
“president” otherwise? However, a studio might not have a president at some
particular time, so the arrow from Runsto Presidents truly means “at most one”
and not “exactly one.” We shall discuss the distinction further in Section 4.3.3.
O

4.1.7 Multiway Relationships

The E/R model makes it convenient to define relationships involving more than
two entity sets. In practice, ternary (three-way) or higher-degree relationships
are rare, but they occasionally are necessary to reflect the true state of affairs.
A multiway relationship in an E/R diagram is represented by lines from the
relationship diamond to each of the involved entity sets.

Example 4.5: In Fig. 4.4 is a relationship Contracts that involves a studio,
a star, and a movie. This relationship represents that a studio has contracted
with a particular star to act in a particular movie. In general, the value of
an E/R relationship can be thought of as a relationship set of tuples whose
components are the entities participating in the relationship, as we discussed in
Section 4.1.5. Thus, relationship Contracts can be described by triples of the
form (studio, star, movie).



4.1. THE ENTITY/RELATIONSHIP MODEL 131

Implications Among Relationship Types

We should be aware that a many-one relationship is a special case of a
many-many relationship, and a one-one relationship is a special case of a
many-one relationship. Thus, any useful property of many-one relation-
ships holds for one-one relationships too. For example, a data structure
for representing many-one relationships will work for one-one relationships,
although it might not be suitable for many-many relationships.

Stars @ Movies

Studios

Figure 4.4: A three-way relationship

In multiway relationships, an arrow pointing to an entity set £ means that if
we select one entity from each of the other entity sets in the relationship, those
entities are related to at most one entity in E. (Note that this rule generalizes
the notation used for many-one, binary relationships.) Informally, we may think
of a functional dependency with F on the right and all the other entity sets of
the relationship on the left.

In Fig. 4.4 we have an arrow pointing to entity set Studios, indicating that
for a particular star and movie, there is only one studio with which the star has
contracted for that movie. However, there are no arrows pointing to entity sets
Stars or Movies. A studio may contract with several stars for a movie, and a
star may contract with one studio for more than one movie. O

4.1.8 Roles in Relationships

It is possible that one entity set appears two or more times in a single relation-
ship. If so, we draw as many lines from the relationship to the entity set as the
entity set appears in the relationship. Each line to the entity set represents a
different role that the entity set plays in the relationship. We therefore label the
edges between the entity set and relationship by names, which we call “roles.”

Example 4.6: In Fig. 4.5 is a relationship Sequel-of between the entity set
Movies and itself. Each relationship is between two movies, one of which is
the sequel of the other. To differentiate the two movies in a relationship, one
line is labeled by the role Original and one by the role Sequel, indicating the



132 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Limits on Arrow Notation in Multiway Relationships

There are not enough choices of arrow or no-arrow on the lines attached to
a relationship with three or more participants. Thus, we cannot describe
every possible situation with arrows. For instance, in Fig. 4.4, the studio
is really a function of the movie alone, not the star and movie jointly,
since only one studio produces a movie. However, our notation does not
distinguish this situation from the case of a three-way relationship where
the entity set pointed to by the arrow is truly a function of both other
entity sets. To handle all possible situations, we would have to give a set
of functional dependencies involving the entity sets of the relationship.

Original

Sequel-of Movies

Sequel

Figure 4.5: A relationship with roles

original movie and its sequel, respectively. We assume that a movie may have
many sequels, but for each sequel there is only one original movie. Thus, the
relationship is many-one from Sequel movies to Original movies, as indicated
by the arrow in the E/R diagram of Fig. 4.5. O

Example 4.7: As a final example that includes both a multiway relationship
and an entity set with multiple roles, in Fig. 4.6 is a more complex version of
the Contracts relationship introduced earlier in Example 4.5. Now, relationship
Contracts involves two studios, a star, and a movie. The intent is that one
studio, having a certain star under contract (in general, not for a particular
movie), may further contract with a second studio to allow that star to act in
a particular movie. Thus, the relationship is described by 4-tuples of the form
(studiol, studio2, star, movie), meaning that studio2 contracts with studiol for
the use of studiol’s star by studio2 for the movie.

We see in Fig. 4.6 arrows pointing to Studios in both of its roles, as “owner”
of the star and as producer of the movie. However, there are not arrows pointing
to Stars or Movies. The rationale is as follows. Given a star, a movie, and a
studio producing the movie, there can be only one studio that “owns” the
star. (We assume a star is under contract to exactly one studio.) Similarly,
only one studio produces a given movie, so given a star, a movie, and the
star’s studio, we can determine a unique producing studio. Note that in both



4.1. THE ENTITY/RELATIONSHIP MODEL

Stars

Studio
of star

Contracts

()

Studios

Movies

Producing
studio

Figure 4.6: A four-way relationship

133

cases we actually needed only one of the other entities to determine the unique
entity—for example, we need only know the movie to determine the unique
producing studio—but this fact does not change the multiplicity specification
for the multiway relationship.

There are no arrows pointing to Stars or Movies. Given a star, the star’s
studio, and a producing studio, there could be several different contracts allow-
ing the star to act in several movies. Thus, the other three components in a
relationship 4-tuple do not necessarily determine a unique movie. Similarly, a
producing studio might contract with some other studio to use more than one
of their stars in one movie. Thus, a star is not determined by the three other
components of the relationship. 0O

Movies

Studios

e

Stars

Figure 4.7: A relationship with an attribute



134 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.1.9 Attributes on Relationships

Sometimes it is convenient, or even essential, to associate attributes with a
relationship, rather than with any one of the entity sets that the relationship
connects. For example, consider the relationship of Fig. 4.4, which represents
contracts between a star and studio for a movie.! We might wish to record the
salary associated with this contract. However, we cannot associate it with the
star; a star might get different salaries for different movies. Similarly, it does
not make sense to associate the salary with a studio (they may pay different
salaries to different stars) or with a movie (different stars in a movie may receive
different salaries).

However, we can associate a unique salary with the (star, movie, studio)
triple in the relationship set for the Contracts relationship. In Fig. 4.7 we see
Fig. 4.4 fleshed out with attributes. The relationship has attribute salary, while
the entity sets have the same attributes that we showed for them in Fig. 4.2.

In general, we may place one or more attributes on any relationship. The
values of these attributes are functionally determined by the entire tuple in the
relationship set for that relation. In some cases, the attributes can be deter-
mined by a subset of the entity sets involved in the relation, but presumably
not by any single entity set (or it would make more sense to place the attribute
on that entity set). For instance, in Fig. 4.7, the salary is really determined by
the movie and star entities, since the studio entity is itself determined by the
movie entity.

It is never necessary to place attributes on relationships. We can instead
invent a new entity set, whose entities have the attributes ascribed to the rela-
tionship. If we then include this entity set in the relationship, we can omit the
attributes on the relationship itself. However, attributes on a relationship are
a useful convention, which we shall continue to use where appropriate.

Example 4.8: Let us revise the E/R diagram of Fig. 4.7, which has the
salary attribute on the Contracts relationship. Instead, we create an entity
set Salaries, with attribute salary. Salaries becomes the fourth entity set of
relationship Contracts. The whole diagram is shown in Fig. 4.8.

Notice that there is an arrow into the Salaries entity set in Fig. 4.8. That
arrow is appropriate, since we know that the salary is determined by all the other
entity sets involved in the relationship. In general, when we do a conversion
from attributes on a relationship to an additional entity set, we place an arrow
into that entity set. O

4.1.10 Converting Multiway Relationships to Binary

There are some data models, such as UML (Section 4.7) and ODL (Section 4.9),
that limit relationships to be binary. Thus, while the E/R model does not

1Here, we have reverted to the earlier notion of three-way contracts in Example 4.5, not
the four-way relationship of Example 4.7.



4.1. THE ENTITY/RELATIONSHIP MODEL 135

Salaries @

Movies

Stars

Clengt)  Ceerre)

Studios

Figure 4.8: Moving the attribute to an entity set

require binary relationships, it is useful to observe that any relationship con-
necting more than two entity sets can be converted to a collection of binary,
many-one relationships. To do so, introduce a new entity set whose entities we
may think of as tuples of the relationship set for the multiway relationship. We
call this entity set a connecting entity set. We then introduce many-one rela-
tionships from the connecting entity set to each of the entity sets that provide
components of tuples in the original, multiway relationship. If an entity set
plays more than one role, then it is the target of one relationship for each role.

Example 4.9: The four-way Contracts relationship in Fig. 4.6 can be replaced
by an entity set that we may also call Contracts. As seen in Fig. 4.9, it partici-
pates in four relationships. If the relationship set for the relationship Contracts
has a 4-tuple (studiol, studio2, star, movie) then the entity set Contracts has
an entity e. This entity is linked by relationship Star-of to the entity star in
entity set Stars. It is linked by relationship Mouvie-of to the entity mowvie in
Movies. It is linked to entities studiol and studio2 of Studios by relationships
Studio-of-star and Producing-studio, respectively.

Note that we have assumed there are no attributes of entity set Contracts,
although the other entity sets in Fig. 4.9 have unseen attributes. However, it is
possible to add attributes, such as the date of signing, to entity set Contracts.
O

4.1.11 Subclasses in the E/R Model

Often, an entity set contains certain entities that have special properties not
associated with all members of the set. If so, we find it useful to define certain



136 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Stars Movies
Star—of Movie—of
Contracts
Studio roducing
of star studio
Studios

Figure 4.9: Replacing a multiway relationship by an entity set and binary
relationships

special-case entity sets, or subclasses, each with its own special attributes and /or
relationships. We connect an entity set to its subclasses using a relationship
called isa (i.e., “an A is a B” expresses an “isa” relationship from entity set A
to entity set B).

An isa relationship is a special kind of relationship, and to emphasize that
it is unlike other relationships, we use a special notation: a triangle. One side
of the triangle is attached to the subclass, and the opposite point is connected
to the superclass. Every isa relationship is one-one, although we shall not draw
the two arrows that are associated with other one-one relationships.

Example 4.10: Among the special kinds of movies we might store in our
example database are cartoons and murder mysteries. For each of these special
movie types, we could define a subclass of the entity set Movies. For instance, let
us postulate two subclasses: Cartoons and Murder-Mysteries. A cartoon has, in
addition to the attributes and relationships of Movies, an additional relationship
called Voices that gives us a set of stars who speak, but do not appear in the
movie. Movies that are not cartoons do not have such stars. Murder-mysteries
have an additional attribute weapon. The connections among the three entity
sets Movies, Cartoons, and Murder-Mysteries is shown in Fig. 4.10. O

While, in principle, a collection of entity sets connected by isa relationships
could have any structure, we shall limit isa-structures to trees, in which there



4.1. THE ENTITY/RELATIONSHIP MODEL 137

Parallel Relationships Can Be Different

Figure 4.9 illustrates a subtle point about relationships. There are two dif-
ferent relationships, Studio-of-Star and Producing-Studio, that each con-
nect entity sets Contracts and Studios. We should not presume that these
relationships therefore have the same relationship sets. In fact, in this
case, it is unlikely that both relationships would ever relate the same con-
tract to the same studios, since a studio would then be contracting with
itself.

More generally, there is nothing wrong with an E/R diagram having
several relationships that connect the same entity sets. In the database,
the instances of these relationships will normally be different, reflecting
the different meanings of the relationships.

length enre,
to Stars g g

Movies
Murder—
Cartoons Mysteries

Figure 4.10: Isa relationships in an E/R diagram

is one root entity set (e.g., Movies in Fig. 4.10) that is the most general, with
progressively more specialized entity sets extending below the root in a tree.

Suppose we have a tree of entity sets, connected by isa relationships. A
single entity consists of components from one or more of these entity sets, as
long as those components are in a subtree including the root. That is, if an
entity e has a component c in entity set F, and the parent of E in the tree is
F, then entity e also has a component d in F. Further, ¢ and d must be paired
in the relationship set for the isa relationship from E to F. The entity e has
whatever attributes any of its components has, and it participates in whatever
relationships any of its components participate in.

Example 4.11: The typical movie, being neither a cartoon nor a murder-
mystery, will have a component only in the root entity set Movies in Fig. 4.10.
These entities have only the four attributes of Movies (and the two relationships



138 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

The E/R View of Subclasses

There is a significant resemblance between “isa” in the E/R model and
subclasses in object-oriented languages. In a sense, “isa” relates a subclass
to its superclass. However, there is also a fundamental difference between
the conventional E/R view and the object-oriented approach: entities are
allowed to have representatives in a tree of entity sets, while objects are
assumed to exist in exactly one class or subclass.

The difference becomes apparent when we consider how the movie
Roger Rabbit was handled in Example 4.11. In an object-oriented ap-
proach, we would need for this movie a fourth entity set, “cartoon-murder-
mystery,” which inherited all the attributes and relationships of Mouvies,
Cartoons, and Murder-Mysteries. However, in the E/R model, the effect
of this fourth subclass is obtained by putting components of the movie
Roger Rabbit in both the Cartoons and Murder-Mysteries entity sets.

of Movies — Stars-in and Qwns — that are not shown in Fig. 4.10).

A cartoon that is not a murder-mystery will have two components, one in
Movies and one in Cartoons. Its entity will therefore have not only the four
attributes of Movies, but the relationship Voices. Likewise, a murder-mystery
will have two components for its entity, one in Movies and one in Murder-
Mysteries and thus will have five attributes, including weapon.

Finally, a movie like Roger Rabbit, which is both a cartoon and a murder-
mystery, will have components in all three of the entity sets Movies, Cartoons,
and Murder-Mysteries. The three components are connected into one entity by
the isa relationships. Together, these components give the Roger Rabbit entity
all four attributes of Movies plus the attribute weapon of entity set Murder-
Mysteries and the relationship Voices of entity set Cartoons. O

4.1.12 Exercises for Section 4.1

Exercise 4.1.1: Design a database for a bank, including information about
customers and their accounts. Information about a customer includes their
name, address, phone, and Social Security number. Accounts have numbers,
types (e.g., savings, checking) and balances. Also record the customer(s) who
own an account. Draw the E/R diagram for this database. Be sure to include
arrows where appropriate, to indicate the multiplicity of a relationship.

Exercise 4.1.2: Modify your solution to Exercise 4.1.1 as follows:

a) Change your diagram so an account can have only one customer.

b) Further change your diagram so a customer can have only one account.



4.1. THE ENTITY/RELATIONSHIP MODEL 139

! ¢) Change your original diagram of Exercise 4.1.1 so that a customer can
have a set of addresses (which are street-city-state triples) and a set of
phones. Remember that we do not allow attributes to have nonprimitive
types, such as sets, in the E/R model.

! d) Further modify your diagram so that customers can have a set of ad-
dresses, and at each address there is a set of phones.

Exercise 4.1.3: Give an E/R diagram for a database recording information
about teams, players, and their fans, including:

1. For each team, its name, its players, its team captain (one of its players),
and the colors of its uniform.

2. For each player, his/her name.

3. For each fan, his/her name, favorite teams, favorite players, and favorite
color.

Remember that a set of colors is not a suitable attribute type for teams. How
can you get around this restriction?

Exercise 4.1.4: Suppose we wish to add to the schema of Exercise 4.1.3 a
relationship Led-by among two players and a team. The intention is that this
relationship set consists of triples (playerl, player2, team) such that player 1
played on the team at a time when some other player 2 was the team captain.

a) Draw the modification to the E/R diagram.

b) Replace your ternary relationship with a new entity set and binary rela-
tionships.

! ¢) Are your new binary relationships the same as any of the previously ex-
isting relationships? Note that we assume the two players are different,
i.e., the team captain is not self-led.

Exercise 4.1.5: Modify Exercise 4.1.3 to record for each player the history of
teams on which they have played, including the start date and ending date (if
they were traded) for each such team.

! Exercise 4.1.6: Design a genealogy database with one entity set: People. The
information to record about persons includes their name (an attribute), their
mother, father, and children.

! Exercise 4.1.7: Modify your “people” database design of Exercise 4.1.6 to
include the following special types of people:

1. Females.



140 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

2. Males.

3. People who are parents.

You may wish to distinguish certain other kinds of people as well, so relation-
ships connect appropriate subclasses of people.

Exercise 4.1.8: An alternative way to represent the information of Exer-
cise 4.1.6 is to have a ternary relationship Family with the intent that in the
relationship set for Family, triple (person, mother, father) is a person, their
mother, and their father; all three are in the People entity set, of course.

a) Draw this diagram, placing arrows on edges where appropriate.

b) Replace the ternary relationship Family by an entity set and binary rela-
tionships. Again place arrows to indicate the multiplicity of relationships.

Exercise 4.1.9: Design a database suitable for a university registrar. This
database should include information about students, departments, professors,
courses, which students are enrolled in which courses, which professors are
teaching which courses, student grades, TA’s for a course (TA’s are students),
which courses a department offers, and any other information you deem appro-
priate. Note that this question is more free-form than the questions above, and
you need to make some decisions about multiplicities of relationships, appro-
priate types, and even what information needs to be represented.

Exercise 4.1.10: Informally, we can say that two E/R diagrams “have the
same information” if, given a real-world situation, the instances of these two di-
agrams that reflect this situation can be computed from one another. Consider
the E/R diagram of Fig. 4.6. This four-way relationship can be decomposed
into a three-way relationship and a binary relationship by taking advantage
of the fact that for each movie, there is a unique studio that produces that
movie. Give an E/R diagram without a four-way relationship that has the
same information as Fig. 4.6.

4.2 Design Principles

We have yet to learn many of the details of the E/R model, but we have enough
to begin study of the crucial issue of what constitutes a good design and what
should be avoided. In this section, we offer some useful design principles.

4.2.1 Faithfulness

First and foremost, the design should be faithful to the specifications of the
application. That is, entity sets and their attributes should reflect reality. You
can’t attach an attribute number-of-cylinders to Stars, although that attribute



4.2. DESIGN PRINCIPLES 141

would make sense for an entity set Automobiles. Whatever relationships are
asserted should make sense given what we know about the part of the real
world being modeled.

Example 4.12: If we define a relationship Staers-in between Stars and Movies,
it should be a many-many relationship. The reason is that an observation of the
real world tells us that stars can appear in more than one movie, and movies
can have more than one star. It is incorrect to declare the relationship Stars-in
to be many-one in either direction or to be one-one. O

Example 4.13: On the other hand, sometimes it is less obvious what the
real world requires us to do in our E/R design. Consider, for instance, entity
sets Courses and Instructors, with a relationship Teaches between them. Is
Teaches many-one from Courses to Instructors? The answer lies in the policy
and intentions of the organization creating the database. It is possible that
the school has a policy that there can be only one instructor for any course.
Even if several instructors may “team-teach” a course, the school may require
that exactly one of them be listed in the database as the instructor responsible
for the course. In either of these cases, we would make Teaches a many-one
relationship from Courses to Instructors.

Alternatively, the school may use teams of instructors regularly and wish
its database to allow several instructors to be associated with a course. Or,
the intent of the Teaches relationship may not be to reflect the current teacher
of a course, but rather those who have ever taught the course, or those who
are capable of teaching the course; we cannot tell simply from the name of the
relationship. In either of these cases, it would be proper to make Teaches be
many-many. 0O

4.2.2 Avoiding Redundancy

We should be careful to say everything once only. The problems we discussed
in Section 3.3 regarding redundancy and anomalies are typical of problems that
can arise in E/R designs. However, in the E/R model, there are several new
mechanisms whereby redundancy and other anomalies can arise.

For instance, we have used a relationship Qwns between movies and studios.
We might also choose to have an attribute studioName of entity set Movies.
While there is nothing illegal about doing so, it is dangerous for several reasons.

1. Doing so leads to repetition of a fact, with the result that extra space
is required to represent the data, once we convert the E/R design to a
relational (or other type of) concrete implementation.

2. There is an update-anomaly potential, since we might change the rela-
tionship but not the attribute, or vice-versa.

We shall say more about avoiding anomalies in Sections 4.2.4 and 4.2.5.



142 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.2.3 Simplicity Counts

Avoid introducing more elements into your design than is absolutely necessary.

Example 4.14: Suppose that instead of a relationship between Mowies and
Studios we postulated the existence of “movie-holdings,” the ownership of a
single movie. We might then create another entity set Holdings. A one-one
relationship Represents could be established between each movie and the unique
holding that represents the movie. A many-one relationship from Holdings to
Studios completes the picture shown in Fig. 4.11.

Movies Rseeez';‘i— Holdings Studios

Figure 4.11: A poor design with an unnecessary entity set

Technically, the structure of Fig. 4.11 truly represents the real world, since
it is possible to go from a movie to its unique owning studio via Holdings.
However, Holdings serves no useful purpose, and we are better off without it.
It makes programs that use the movie-studio relationship more complicated,
wastes space, and encourages errors. 0O

4.2.4 Choosing the Right Relationships

Entity sets can be connected in various ways by relationships. However, adding
to our design every possible relationship is not often a good idea. Doing so
can lead to redundancy, update anomalies, and deletion anomalies, where the
connected pairs or sets of entities for one relationship can be deduced from
one or more other relationships. We shall illusttate the problem and what
to do about it with two examples. In the first example, several relationships
could represent the same information; in the second, one relationship could be
deduced from several others.

Example 4.15: Let us review Fig. 4.7, where we connected movies, stars,
and studios with a three-way relationship Contracts. We omitted from that
figure the two binary relationships Stars-in and Owns from Fig. 4.2. Do we
also need these relationships, between Movies and Stars, and between Movies
and Studios, respectively? The answer is: “we don’t know; it depends on our
assumptions regarding the three relationships in question.”

It might be possible to deduce the relationship Stars-in from Contracts. If
a star can appear in a movie only if there is a contract involving that star, that
movie, and the owning studio for the movie, then there truly is no need for
relationship Stars-in. We could figure out all the star-movie pairs by looking
at the star-movie-studio triples in the relationship set for Contracts and taking
only the star and movie components, i.e., projecting Contracts onto Stars-in.



4.2. DESIGN PRINCIPLES 143

However, if a star can work on a movie without there being a contract — or
what is more likely, without there being a contract that we know about in our
database — then there could be star-movie pairs in Stars-in that are not part
of star-movie-studio triples in Contracts. In that case, we need to retain the
Stars-in relationship.

A similar observation applies to relationship Qwns. If for every movie, there
is at least one contract involving that movie, its owning studio, and some star for
that movie, then we can dispense with Owns. However, if there is the possibility
that a studio owns a movie, yet has no stars under contract for that movie, or
no such contract is known to our database, then we must retain Quns.

In summary, we cannot tell you whether a given relationship will be redun-
dant. You must find out from those who wish the database implemented what
to expect. Only then can you make a rational decision about whether or not to
include relationships such as Stars-in or Quns. O

Example 4.16: Now, consider Fig. 4.2 again. In this diagram, there is no
relationship between stars and studios. Yet we can use the two relationships
Stars-in and Owns to build a connection by the process of composing those
two relationships. That is, a star is connected to some movies by Stars-in, and
those movies are connected to studios by Owns. Thus, we could say that a star
is connected to the studios that own movies in which the star has appeared.

Would it make sense to have a relationship Works-for, as suggested in
Fig. 4.12, between Stars and Studios too? Again, we cannot tell without know-
ing more. First, what would the meaning of this relationship be? If it is to
mean “the star appeared in at least one movie of this studio,” then probably
there is no good reason to include it in the diagram. We could deduce this
information from Stars-in and Owns instead.

Stars
Stars—in
Movies %
Owns
Studios

Figure 4.12: Adding a relationship between Stars and Studios

However, perhaps we have other information about stars working for stu-
dios that is not implied by the connection through a movie. In that case, a



144 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

relationship connecting stars directly to studios might be useful and would not
be redundant. Alternatively, we might use a relationship between stars and
studios to mean something entirely different. For example, it might represent
the fact that the star is under contract to the studio, in a manner unrelated
to any movie. As we suggested in Example 4.7, it is possible for a star to be
under contract to one studio and yet work on a movie owned by another stu-
dio. In this case, the information found in the new Works-for relation would
be independent of the Stars-in and Owns relationships, and would surely be
nonredundant. O

4.2.5 Picking the Right Kind of Element

Sometimes we have options regarding the type of design element used to repre-
sent a real-world concept. Many of these choices are between using attributes
and using entity set/relationship combinations. In general, an attribute is sim-
pler to implement than either an entity set or a relationship. However, making
everything an attribute will usually get us into trouble.

Example 4.17: Let us consider a specific problem. In Fig. 4.2, were we wise
to make studios an entity set? Should we instead have made the name and
address of the studio be attributes of movies and eliminated the Studio entity
set? One problem with doing so is that we repeat the address of the studio for
each movie. We can also have an update anomaly if we change the address for
one movie but not another with the same studio, and we can have a deletion
anomaly if we delete the last movie owned by a given studio.

On the other hand, if we did not record addresses of studios, then there
is no harm in making the studio name an attribute of movies. We have no
anomalies in this case. Saying the name of a studio for each movie is not true
redundancy, since we must represent the owner of each movie somehow, and
saying the name of the studio is a reasonable way to do so. O

We can abstract what we have observed in Example 4.17 to give the con-
ditions under which we prefer to use an attribute instead of an entity set.
Suppose E is an entity set. Here are conditions that £ must obey in order for
us to replace E by an attribute or attributes of several other entity sets.

1. All relationships in which E is involved must have arrows entering E.
That is, £ must be the “one” in many-one relationships, or its general-
ization for the case of multiway relationships.

2. If E has more than one attribute, then no attribute depends on the other
attributes, the way address depends on name for Studios. That is, the
only key for E is all its attributes.

3. No relationship involves E more than once.

If these conditions are met, then we can replace entity set E as follows:



4.2. DESIGN PRINCIPLES 145

a) If there is a many-one relationship R from some entity set F' to E, then re-
move R and make the attributes of E be attributes of F', suitably renamed
if they conflict with attribute names for F'. In effect, each F-entity takes,
as attributes, the name of the unique, related E-entity.? For instance,
Movies entities could take their studio name as an attribute, should we
dispense with studio addresses.

b) If there is a multiway relationship R with an arrow to F, make the at-
tributes of E be attributes of R and delete the arc from R to E. An
example of this transformation is replacing Fig. 4.8, where there is an
entity set Salaries with a number as its lone attribute, by its original
diagram in Fig. 4.7.

Example 4.18: Let us consider a point where there is a tradeoff between using
a multiway relationship and using a connecting entity set with several binary
relationships. We saw a four-way relationship Contracts among a star, a movie,
and two studios in Fig. 4.6. In Fig. 4.9, we mechanically converted it to an
entity set Contracts. Does it matter which we choose?

As the problem was stated, either is appropriate. However, should we change
the problem just slightly, then we are almost forced to choose a connecting entity
set. Let us suppose that contracts involve one star, one movie, but any set of
studios. This situation is more complex than the one in Fig. 4.6, where we
had two studios playing two roles. In this case, we can have any number of
studios involved, perhaps one to do production, one for special effects, one for
distribution, and so on. Thus, we cannot assign roles for studios.

It appears that a relationship set for the relationship Contracts must contain
triples of the form (star, movie, set-of-studios), and the relationship Contracts
itself involves not only the usual Stars and Mouvies entity sets, but a new entity
set whose entities are sets of studios. While this approach is possible, it seems
unnatural to think of sets of studios as basic entities, and we do not recommend
it.

A better approach is to think of contracts as an entity set. As in Fig. 4.9,
a contract entity connects a star, a movie and a set of studios, but now there
must be no limit on the number of studios. Thus, the relationship between
contracts and studios is many-many, rather than many-one as it would be if
contracts were a true “connecting” entity set. Figure 4.13 sketches the E/R
diagram. Note that a contract is related to a single star and to a single movie,
but to any number of studios. O

4.2.6 Exercises for Section 4.2

Exercise 4.2.1: In Fig. 4.14 is an E/R diagram for a bank database involv-
ing customers and accounts. Since customers may have several accounts, and

2In a situation where an F-entity is not related to any E-entity, the new attributes of F
would be given special “null” values to indicate the absence of a related E-entity. A similar
arrangement would be used for the new attributes of R in case (b).



146 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Stars Contracts Movies

Studios

Figure 4.13: Contracts connecting a star, a movie, and a set of studios

accounts may be held jointly by several customers, we associate with each cus-
tomer an “account set,” and accounts are members of one or more account sets.
Assuming the meaning of the various relationships and attributes are as ex-
pected given their names, criticize the design. What design rules are violated?
Why? What modifications would you suggest?

owner—

AcctSets Customers

Member
of

Accounts Addresses

Figure 4.14: A poor design for a bank database

Exercise 4.2.2: Under what circumstances (regarding the unseen attributes
of Studios and Presidents) would you recommend combining the two entity sets
and relationship in Fig. 4.3 into a single entity set and attributes?

Exercise 4.2.3: Suppose we delete the attribute address from Studios in
Fig. 4.7. Show how we could then replace an entity set by an attribute. Where



4.2. DESIGN PRINCIPLES 147

would that attribute appear?

Exercise 4.2.4: Give choices of attributes for the following entity sets in
Fig. 4.13 that will allow the entity set to be replaced by an attribute:

a) Stars.
b) Mowies.

! ¢) Studios.

1! Exercise 4.2.5: In this and following exercises we shall consider two design
options in the E/R model for describing births. At a birth, there is one baby
(twins would be represented by two births), one mother, any number of nurses,
and any number of doctors. Suppose, therefore, that we have entity sets Babies,
Mothers, Nurses, and Doctors. Suppose we also use a relationship Births, which
connects these four entity sets, as suggested in Fig. 4.15. Note that a tuple of
the relationship set for Births has the form (baby, mother, nurse, doctor). If
there is more than one nurse and/or doctor attending a birth, then there will
be several tuples with the same baby and mother, one for each combination of
nurse and doctor.

Mothers

Babies \Qrths Nurses

Doctors

Figure 4.15: Representing births by a multiway relationship

There are certain assumptions that we might wish to incorporate into our
design. For each, tell how to add arrows or other elements to the E/R diagram
in order to express the assumption.

a) For every baby, there is a unique mother.

b) For every combination of a baby, nurse, and doctor, there is a unique
mother.

c¢) For every combination of a baby and a mother there is a unique doctor.

! Exercise 4.2.6: Another approach to the problem of Exercise 4.2.5 is to con-
nect the four entity sets Babies, Mothers, Nurses, and Doctors by an entity set



148 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Births

Babies Mothers Doctors Nurses

Figure 4.16: Representing births by an entity set

Births, with four relationships, one between Births and each of the other entity
sets, as suggested in Fig. 4.16. Use arrows (indicating that certain of these
relationships are many-one) to represent the following conditions:

a) Every baby is the result of a unique birth, and every birth is of a unique
baby.

b) In addition to (a), every baby has a unique mother.
¢) In addition to (a) and (b), for every birth there is a unique doctor.
In each case, what design flaws do you see?

!! Exercise 4.2.7: Suppose we change our viewpoint to allow a birth to involve
more than one baby born to one mother. How would you represent the fact
that every baby still has a unique mother using the approaches of Exercises
4.2.5 and 4.2.67

4.3 Constraints in the E/R Model

The E/R model has several ways to express the common kinds of constraints
on the data that will populate the database being designed. Like the relational
model, there is a way to express the idea that an attribute or attributes are a key
for an entity set. We have already seen how an arrow connecting a relationship
to an entity set serves as a “functional dependency.” There is also a way to
express a referential-integrity constraint, where an entity in one set is required
to have an entity in another set to which it is related.

4.3.1 Keys in the E/R Model

A key for an entity set F is a set K of one or more attributes such that, given
any two distinct entities e¢; and es in E, e; and e3 cannot have identical values
for each of the attributes in the key K. If K consists of more than one attribute,
then it is possible for e; and e to agree in some of these attributes, but never
in all attributes. Some important points to remember are:



4.3. CONSTRAINTS IN THE E/R MODEL 149

¢ Every entity set must have a key, although in some cases — isa-hierarchies
and “weak” entity sets (see Section 4.4), the key actually belongs to an-
other entity set.

e There can be more than one possible key for an entity set. However, it
is customary to pick one key as the “primary key,” and to act as if that
were the only key.

e When an entity set is involved in an isa-hierarchy, we require that the root
entity set have all the attributes needed for a key, and that the key for
each entity is found from its component in the root entity set, regardless
of how many entity sets in the hierarchy have components for the entity.

In our running movies example, we have used title and year as the key for
Movies, counting on the observation that it is unlikely that two movies with
the same title would be released in one year. We also decided that it was safe
to use name as a key for MovieStar, believing that no real star would ever want
to use the name of another star.

4.3.2 Representing Keys in the E/R Model

In our E/R-diagram notation, we underline the attributes belonging to a key for
an entity set. For example, Fig. 4.17 reproduces our E/R diagram for movies,
stars, and studios from Fig. 4.2, but with key attributes underlined. Attribute
name is the key for Stars. Likewise, Studios has a key consisting of only its own
attribute name.

Surs @ Gy ()

Movies

Studios

Figure 4.17: E/R diagram; keys are indicated by underlines




150 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

The attributes title and year together form the key for Movies. Note that
when several attributes are underlined, as in Fig. 4.17, then they are each
members of the key. There is no notation for representing the situation where
there are several keys for an entity set; we underline only the primary key. You
should also be aware that in some unusual situations, the attributes forming
the key for an entity set do not all belong to the entity set itself. We shall defer
this matter, called “weak entity sets,” until Section 4.4.

4.3.3 Referential Integrity

Recall our discussion of referential-integrity constraints in Section 2.5.2. These
constraints say that a value appearing in one context must also appear in
another. For example, let us consider the many-one relationship Owns from
Movies to Studios in Fig. 4.2. The many-one requirement simply says that no
movie can be owned by more than one studio. It does not say that a movie
must surely be owned by a studio, or that the owning studio must be present
in the Studios entity set, as stored in our database. An appropriate referential
integrity constraint on relationship Owns is that for each movie, the owning
studio (the entity “referenced” by the relationship for this movie) must exist in
our database.

The arrow notation in E/R diagrams is able to indicate whether a rela-
tionship is expected to support referential integrity in one or more directions.
Suppose R is a relationship from entity set E to entity set F. A rounded arrow-
head pointing to F indicates not only that the relationship is many-one from E
to F, but that the entity of set F related to a given entity of set E is required
to exist. The same idea applies when R is a relationship among more than two
entity sets.

Example 4.19: Figure 4.18 shows some appropriate referential integrity con-
straints among the entity sets Mouvies, Studios, and Presidents. These entity sets
and relationships were first introduced in Figs. 4.2 and 4.3. We see a rounded
arrow entering Studios from relationship Owns. That arrow expresses the refer-
ential integrity constraint that every movie must be owned by one studio, and
this studio is present in the Studios entity set.

Movies Owns 3 Studios £ Runs Presidents

Figure 4.18: E/R diagram showing referential integrity constraints

Similarly, we see a rounded arrow entering Studios from Runs. That arrow
expresses the referential integrity constraint that every president runs a studio
that exists in the Studios entity set.

Note that the arrow to Presidents from Runs remains a pointed arrow. That
choice reflects a reasonable assumption about the relationship between studios



4.3. CONSTRAINTS IN THE E/R MODEL 151

and their presidents. If a studio ceases to exist, its president can no longer be
called a president, so we would expect the president of the studio to be deleted
from the entity set Presidents. Hence there is a rounded arrow to Studios. On
the other hand, if a president were fired or resigned, the studio would continue
to exist. Thus, we place an ordinary, pointed arrow to Presidents, indicating
that each studio has at most one president, but might have no president at
some time. O

4.3.4 Degree Constraints

In the E/R model, we can attach a bounding number to the edges that connect
a relationship to an entity set, indicating limits on the number of entities that
can be connected to any one entity of the related entity set. For example, we
could choose to place a constraint on the degree of a relationship, such as that
a movie entity cannot be connected by relationship Stars-in to more than 10

star entities.
<=10
Stars Movies

Figure 4.19: Representing a constraint on the number of stars per movie

Figure 4.19 shows how we can represent this constraint. As another example,
we can think of the arrow as a synonym for the constraint “< 1,” and we can
think of the rounded arrow of Fig. 4.18 as standing for the constraint “=1.”

4.3.5 Exercises for Section 4.3
Exercise 4.3.1: For your E/R diagrams of:
a) Exercise 4.1.1.
b) Exercise 4.1.3.
¢) Exercise 4.1.6.

() Select and specify keys, and (¢1) Indicate appropriate referential integrity
constraints.

Exercise 4.3.2: We may think of relationships in the E/R model as having
keys, just as entity sets do. Let R be a relationship among the entity sets
E\,Es,... ,E,. Then a key for R is a set K of attributes chosen from the
attributes of Ei, Es,... ,E, such that if (e1,e2,...,en) and (f1, f2,..., fa)
are two different tuples in the relationship set for R, then it is not possible that
these tuples agree in all the attributes of K. Now, suppose n = 2; that is, R
is a binary relationship. Also, for each 7, let K; be a set of attributes that is a
key for entity set E;. In terms of E; and FE, give a smallest possible key for R
under the assumption that:



152 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

a) R is many-many.
b) R is many-one from E,; to Es.
¢) R is many-one from E> to E;.

d) R is one-one.

! Exercise 4.3.3: Consider again the problem of Exercise 4.3.2, but with n
allowed to be any number, not just 2. Using only the information about which
arcs from R to the E;’s have arrows, show how to find a smallest possible key
K for R in terms of the Kj’s.

4.4 Weak Entity Sets

It is possible for an entity set’s key to be composed of attributes, some or all
of which belong to another entity set. Such an entity set is called a weak entity
set.

4.4.1 Causes of Weak Entity Sets

There are two principal reasons we need weak entity sets. First, sometimes
entity sets fall into a hierarchy based on classifications unrelated to the “isa
hierarchy” of Section 4.1.11. If entities of set E are subunits of entities in set
F, then it is possible that the names of E-entities are not unique until we take
into account the name of the F-entity to which the E entity is subordinate.

Several examples will illustrate the problem.

Example 4.20: A movie studio might have several film crews. The crews
might be designated by a given studio as crew 1, crew 2, and so on. However,
other studios might use the same designations for crews, so the attribute number
is not a key for crews. Rather, to name a crew uniquely, we need to give
both the name of the studio to which it belongs and the number of the crew.
The situation is suggested by Fig. 4.20. The double-rectangle indicates a weak
entity set, and the double-diamond indicates a many-one relationship that helps
provide the key for the weak entity set. The notation will be explained further
in Section 4.4.3. The key for weak entity set Crews is its own number attribute
and the name attribute of the unique studio to which the crew is related by the
many-one Unit-of relationship. O

Example 4.21: A species is designated by its genus and species names. For
example, humans are of the species Homo sapiens; Homo is the genus name
and sapiens the species name. In general, a genus consists of several species,
each of which has a name beginning with the genus name and continuing with
the species name. Unfortunately, species names, by themselves, are not unique.



44. WEAK ENTITY SETS 153

Figure 4.20: A weak entity set for crews, and its connections

Studios

ANV

Two or more genera may have species with the same species name. Thus, to
designate a species uniquely we need both the species name and the name of the
genus to which the species is related by the Belongs-to relationship, as suggested
in Fig. 4.21. Species is a weak entity set whose key comes partially from its

Figure 4.21: Another weak entity set, for species

Species

The second common source of weak entity sets is the connecting entity
sets that we introduced in Section 4.1.10 as a way to eliminate a multiway
relationship.® These entity sets often have no attributes of their own. Their
key is formed from the attributes that are the key attributes for the entity sets
they connect.

Example 4.22: In Fig. 4.22 we see a connecting entity set Contracts that
replaces the ternary relationship Contracts of Example 4.5. Contracts has an
attribute salary, but this attribute does not contribute to the key. Rather, the
key for a contract consists of the name of the studio and the star involved, plus
the title and year of the movie involved. 0O

4.4.2 Requirements for Weak Entity Sets

We cannot obtain key attributes for a weak entity set indiscriminately. Rather,
if E is a weak entity set then its key consists of:

1. Zero or more of its own attributes, and

3Remember that there is no particular requirement in the E/R model that multiway re-
lationships be eliminated, although this requirement exists in some other database design
models.



154 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Contracts

U'os Movies

name

Figure 4.22: Connecting entity sets are weak

2. Key attributes from entity sets that are reached by certain many-one
relationships from E to other entity sets. These many-one relationships
are called supporting relationships for E, and the entity sets reached from
E are supporting entity sets.

In order for R, a many-one relationship from E to some entity set F, to be a
supporting relationship for E, the following conditions must be obeyed:

a) R must be a binary, many-one relationship* from E to F.

b) R must have referential integrity from E to F. That is, for every E-
entity, there must be exactly one existing F-entity related to it by R. Put
another way, a rounded arrow from R to F must be justified.

c¢) The attributes that F' supplies for the key of E must be key attributes of
F.

d) However, if F is itself weak, then some or all of the key attributes of F’
supplied to E will be key attributes of one or more entity sets G to which
F is connected by a supporting relationship. Recursively, if G is weak,
some key attributes of G will be supplied from elsewhere, and so on.

4Remember that a one-one relationship is a special case of a many-one relationship. When
we say a relationship must be many-one, we always include one-one relationships as well.



44. WEAK ENTITY SETS 155

e) If there are several different supporting relationships from E to the same
entity set F, then each relationship is used to supply a copy of the key
attributes of F' to help form the key of E. Note that an entity e from
E may be related to different entities in F' through different supporting
relationships from E. Thus, the keys of several different entities from F
may appear in the key values identifying a particular entity e from E.

The intuitive reason why these conditions are needed is as follows. Consider
an entity in a weak entity set, say a crew in Example 4.20. Each crew is unique,
abstractly. In principle we can tell one crew from another, even if they have
the same number but belong to different studios. It is only the data about
crews that makes it hard to distinguish crews, because the number alone is not
sufficient. The only way we can associate additional information with a crew
is if there is some deterministic process leading to additional values that make
the designation of a crew unique. But the only unique values associated with
an abstract crew entity are:

1. Values of attributes of the Crews entity set, and

2. Values obtained by following a relationship from a crew entity to a unique
entity of soine other entity set, where that other entity has a unique
associated value of some kind. That is, the relationship followed must be
many-one to the other entity set F', and the associated value must be part
of a key for F.

4.4.3 Weak Entity Set Notation

We shall adopt the following conventions to indicate that an entity set is weak
and to declare its key attributes.

1. If an entity set is weak, it will be shown as a rectangle with a double
border. Examples of this convention are Crews in Fig. 4.20 and Contracts
in Fig. 4.22.

2. Its supporting many-one relationships will be shown as diamonds with a
double border. Examples of this convention are Unit-of in Fig. 4.20 and
all three relationships in Fig. 4.22.

3. If an entity set supplies any attributes for its own key, then those at-
tributes will be underlined. An example is in Fig. 4.20, where the number
of a crew participates in its own key, although it is not the complete key
for Crews.

We can summarize these conventions with the following rule:

e Whenever we use an entity set E with a double border, it is weak. The key
for E is whatever attributes of E are underlined plus the key attributes of
those entity sets to which F is connected by many-one relationships with
a double border.



156 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

We should remember that the double-diamond is used only for supporting
relationships. It is possible for there to be many-one relationships from a weak
entity set that are not supporting relationships, and therefore do not get a
double diamond.

Example 4.23: In Fig. 4.22, the relationship Studio-of need not be a support-
ing relationship for Contracts. The reason is that each movie has a unique own-
ing studio, determined by the (not shown) many-one relationship from Movies
to Studios. Thus, if we are told the name of a star and a movie, there is at most
one contract with any studio for the work of that star in that movie. In terms
of our notation, it would be appropriate to use an ordinary single diamond,
rather than the double diamond, for Studio-of in Fig. 4.22. DO

4.4.4 Exercises for Section 4.4

Exercise 4.4.1: One way to represent students and the grades they get in
courses is to use entity sets corresponding to students, to courses, and to “en-
rollments.” Enrollment entities form a “connecting” entity set between students
and courses and can be used to represent not only the fact that a student is
taking a certain course, but the grade of the student in the course. Draw an
E/R diagram for this situation, indicating weak entity sets and the keys for the
entity sets. Is the grade part of the key for enrollments?

Exercise 4.4.2: Modify your solution to Exercise 4.4.1 so that we can record
grades of the student for each of several assignments within a course. Again,
indicate weak entity sets and keys.

Exercise 4.4.3: For your E/R diagrams of Exercise 4.2.6(a)-(c), indicate weak
entity sets, supporting relationships, and keys.

Exercise 4.4.4: Draw E/R diagrams for the following situations involving
weak entity sets. In each case indicate keys for entity sets.

a) Entity sets Courses and Departments. A course is given by a unique
department, but its only attribute is its number. Different departments
can offer courses with the same number. Each department has a unique
name.

!'b) Entity sets Leagues, Teams, and Players. League names are unique. No
league has two teams with the same name. No team has two players with
the same number. However, there can be players with the same number
on different teams, and there can be teams with the same name in different
leagues.



4.5. FROM E/R DIAGRAMS TO RELATIONAL DESIGNS 157

4.5 From E/R Diagrams to Relational Designs

To a first approximation, converting an E/R design to a relational database
schema is straightforward:

e Turn each entity set into a relation with the same set of attributes, and

e Replace a relationship by a relation whose attributes are the keys for the
connected entity sets.

While these two rules cover much of the ground, there are also several special
situations that we need to deal with, including:

1. Weak entity sets cannot be translated straightforwardly to relations.
2. “Isa” relationships and subclasses require careful treatment.

3. Sometimes, we do well to combine two relations, especially the relation for
an entity set E and the relation that comes from a many-one relationship
from E to some other entity set.

4.5.1 From Entity Sets to Relations

Let us first consider entity sets that are not weak. We shall take up the mod-
ifications needed to accommodate weak entity sets in Section 4.5.4. For each
non-weak entity set, we shall create a relation of the same name and with the
same set of attributes. This relation will not have any indication of the rela-
tionships in which the entity set participates; we’ll handle relationships with
separate relations, as discussed in Section 4.5.2.

Example 4.24: Consider the three entity sets Movies, Stars and Studios from
Fig. 4.17, which we reproduce here as Fig. 4.23. The attributes for the Movies
entity set are title, year, length, and genre. As a result, this relation Movies
looks just like the relation Movies of Fig. 2.1 with which we began Section 2.2.

Next, consider the entity set Stars from Fig. 4.23. There are two attributes,
name and address. Thus, we would expect the corresponding Stars relation to
have schema Stars(name, address) and for

name | address

Carrie Fisher | 123 Maple St., Hollywood
Mark Hamill 456 0ak Rd., Brentwood
Harrison Ford | 789 Palm Dr., Beverly Hills

to be a typical instance. 0O



158 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

@ >

Stars Citey  (year)
>

Movies

address

Figure 4.23: E/R diagram for the movie database

4.5.2 From E/R Relationships to Relations

Relationships in the E/R model are also represented by relations. The relation
for a given relationship R has the following attributes:

1. For each entity set involved in relationship R, we take its key attribute
or attributes as part of the schema of the relation for R.

2. If the relationship has attributes, then these are also attributes of relation
R.

If one entity set is involved several times in a relationship, in different roles,
then its key attributes each appear as many times as there are roles. We must
rename the attributes to avoid name duplication. More generally, should the
same attribute name appear twice or more among the attributes of R itself and
the keys of the entity sets involved in relationship R, then we need to rename
to avoid duplication.

Example 4.25: Consider the relationship Owns of Fig. 4.23. This relationship
connects entity sets Movies and Studios. Thus, for the schema of relation Owns
we use the key for Movies, which is title and year, and the key of Studios, which
is name. That is, the schema for relation Owns is:

Owns(title, year, studioName)

A sample instance of this relation is:



4.5. FROM E/R DIAGRAMS TO RELATIONAL DESIGNS 159

title | year | studioName
Star Wars 1977 | Fox
Gone With the Wind | 1939 | MGM
Wayne’s World 1992 | Paramount

We have chosen the attribute studioName for clarity; it corresponds to the
attribute name of Studios. O

title | year | starName
Star Wars 1977 | Carrie Fisher
Star Wars 1977 | Mark Hamill
Star Wars 1977 | Harrison Ford
Gone With the Wind | 1939 | Vivien Leigh
Wayne’s World 1992 | Dana Carvey
Wayne’s World 1992 | Mike Meyers

Figure 4.24: A relation for relationship Stars-In

Example 4.26: Similarly, the relationship Stars-In of Fig. 4.23 can be trans-
formed into a relation with the attributes title and year (the key for Mouvies)
and attribute starName, which is the key for entity set Stars. Figure 4.24 shows
a sample relation Stars-In. O

Stars Movies
Contracts
Studio Producing
of star studio
Studios

Figure 4.25: The relationship Contracts

Example 4.27: Multiway relationships are also easy to convert to relations.
Consider the four-way relationship Contracts of Fig. 4.6, reproduced here as
Fig. 4.25, involving a star, a movie, and two studios — the first holding the
star’s contract and the second contracting for that star’s services in that movie.
We represent this relationship by a relation Contracts whose schema consists
of the attributes from the keys of the following four entity sets:



160 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

1. The key starName for the star.
2. The key consisting of attributes title and year for the movie.

3. The key studio0fStar indicating the name of the first studio; recall we
assume the studio name is a key for the entity set Studios.

4. The key producingStudio indicating the name of the studio that will
produce the movie using that star.

That is, the relation schema is:
Contracts(starName, title, year, studio0OfStar, producingStudio)

Notice that we have been inventive in choosing attribute names for our relation
schema, avoiding “name” for any attribute, since it would be unobvious whether
that referred to a star’s name or studio’s name, and in the latter case, which
studio role. Also, were there attributes attached to entity set Contracts, such
as salary, these attributes would be added to the schema, of relation Contracts.
O

4.5.3 Combining Relations

Sometimes, the relations that we get from converting entity sets and relation-
ships to relations are not the best possible choice of relations for the given data.
One common situation occurs when there is an entity set E with a many-one
relationship R from E to F. The relations from E and R will each have the
key for E in their relation schema. In addition, the relation for E will have
in its schema the attributes of E that are not in the key, and the relation for
R will have the key attributes of F' and any attributes of R itself. Because R
is many-one, all these attributes are functionally determined by the key for E,
and we can combine them into one relation with a schema consisting of:

1. All attributes of E.
2. The key attributes of F'.

3. Any attributes belonging to relationship R.

For an entity e of E that is not related to any entity of F, the attributes of
types (2) and (3) will have null values in the tuple for e.

Example 4.28: In our running movie example, Owns is a many-one relation-
ship from Movies to Studios, which we converted to a relation in Example 4.25.
The relation obtained from entity set Movies was discussed in Example 4.24.
We can combine these relations by taking all their attributes and forming one
relation schema. If we do, the relation looks like that in Fig. 4.26. 0O



4.5. FROM E/R DIAGRAMS TO RELATIONAL DESIGNS 161

title | year | length | genre | studioName
Star Wars 1977 | 124 sciFi Fox
Gone With the Wind | 1939 | 239 drama MGM
Wayne’s World 1992 | 95 comedy | Paramount

Figure 4.26: Combining relation Movies with relation Owns

Whether or not we choose to combine relations in this manner is a matter
of judgement. However, there are some advantages to having all the attributes
that are dependent on the key of entity set E together in one relation, even
if there are a number of many-one relationships from E to other entity sets.
For example, it is often more efficient to answer queries involving attributes
of one relation than to answer queries involving attributes of several relations.
In fact, some design systems based on the E/R model combine these relations
automatically.

On the other hand, one might wonder if it made sense to combine the
relation for E with the relation of a relationship R that involved E but was not
many-one from E.to some other entity set. Doing so is risky, because it often
leads to redundancy, as the next example shows.

Example 4.29: To get a sense of what can go wrong, suppose we combined the
relation of Fig. 4.26 with the relation that we get for the many-many relationship
Stars-in; recall this relation was suggested by Fig. 4.24. Then the combined
relation would look like Fig. 3.2, which we reproduce here as Fig. 4.27. As we
discussed in Section 3.3.1, this relation has anomalies that we need to remove
by the process of normalization. O

title | year | length | genre | studioName | starName
Star Wars 1977 | 124 SciFi Fox Carrie Fisher
Star Wars 1977 | 124 SciFi Fox Mark Hamill
Star Wars 1977 | 124 SciFi Fox Harrison Ford
Gone With the Wind [ 1939 [ 231 drama | MGM Vivien Leigh
Wayne’s World 1992 | 95 comedy | Paramount Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Meyers

Figure 4.27: The relation Movies with star information

4.5.4 Handling Weak Entity Sets

When a weak entity set appears in an E/R diagram, we need to do three things
differently.



162 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

1. The relation for the weak entity set W itself must include not only the
attributes of W but also the key attributes of the supporting entity sets.
The supporting entity sets are easily recognized because they are reached
by supporting (double-diamond) relationships from W.

2. The relation for any relationship in which the weak entity set W appears
must use as a key for W all of its key attributes, including those of other
entity sets that contribute to W’s key.

3. However, a supporting relationship R, from the weak entity set W to a
supporting entity set, need not be converted to a relation at all. The
justification is that, as discussed in Section 4.5.3, the attributes of many-
one relationship R’s relation will either be attributes of the relation for
W, or (in the case of attributes on R) can be added to the schema for
W’s relation.

Of course, when introducing additional attributes to build the key of a weak
entity set, we must be careful not to use the same name twice. If necessary, we
rename some or all of these attributes.

Example 4.30: Let us consider the weak entity set Crews from Fig. 4.20,
which we reproduce here as Fig. 4.28. From this diagram we get three relations,
whose schemas are:

Studios(name, addr)
Crews (number, studioName, crewChief)
Unit~of (number, studioName, name)

The first relation, Studios, is constructed in a straightforward manner from
the entity set of the same name. The second, Crews, comes from the weak entity
set Crews. The attributes of this relation are the key attributes of Crews and the
one nonkey attribute of Crews, which is erewChief. We have chosen studioName
as the attribute in relation Crews that corresponds to the attribute name in the
entity set Studios.

Crews 3 Studios

Figure 4.28: The crews example of a weak entity set

The third relation, Unit-of, comes from the relationship of the same name.
As always, we represent an E/R relationship in the relational model by a relation
whose schema has the key attributes of the related entity sets. In this case,



o

4.5. FROM E/R DIAGRAMS TO RELATIONAL DESIGNS 163

Unit-of has attributes number and studioName, the key for weak entity set
Crews, and attribute name, the key for entity set Studios. However, notice that
since Unit-of is a many-one relationship, the studio studioName is surely the
same as the studio name.

For instance, suppose Disney crew #3 is one of the crews of the Disney
studio. Then the relationship set for E/R relationship Unit-of includes the pair

(Disney-crew-#3, Disney)
This pair gives rise to the tuple
(3, Disney, Disney)

for the relation Unit-of.

Notice that, as must be the case, the components of this tuple for attributes
studioName and name are identical. As a consequence, we can “merge” the
attributes studioName and name of Unit-of, giving us the simpler schema:

Unit-of (number, name)

However, now we can dispense with the relation Unit-of altogether, since its
attributes are now a subset of the attributes of relation Crews. O

The phenomenon observed in Example 4.30 — that a supporting relationship
needs no relation — is universal for weak entity sets. The following is a modified
rule for converting to relations entity sets that are weak.

o If W is a weak entity set, construct for W a relation whose schema consists
of:
1. All attributes of W.
2. All attributes of supporting relationships for W.

3. For each supporting relationship for W, say a many-one relationship
from W to entity set E, all the key attributes of E.

Rename attributes, if necessary, to avoid name conflicts.

¢ Do not construct a relation for any supporting relationship for W.

4.5.5 Exercises for Section 4.5

Exercise 4.5.1: Convert the E/R diagram of Fig. 4.29 to a relational database
schema.

Exercise 4.5.2: There is another E/R diagram that could describe the weak
entity set Bookings in Fig. 4.29. Notice that a booking can be identified uniquely
by the flight number, day of the flight, the row, and the seat; the customer is
not then necessary to help identify the booking.



164 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Relations With Subset Schemas

You might imagine from Example 4.30 that whenever one relation R has a
set of attributes that is a subset of the attributes of another relation S, we
can eliminate R. That is not exactly true. R might hold information that
doesn’t appear in S because the additional attributes of S do not allow us
to extend a tuple from R to S.

For instance, the Internal Revenue Service tries to maintain a relation
People(name, ss#) of potential taxpayers and their social-security num-
bers, even if the person had no income and did not file a tax return. They
might also maintain a relation TaxPayers(name, ss#, amount) indicat-
ing the amount of tax paid by each person who filed a return in the current
year. The schema, of People is a subset of the schema of TaxPayers, yet
there may be value in remembering the social-security number of those
who are mentioned in People but not in Taxpayers.

In fact, even identical sets of attributes may have different semantics,
80 it is not possible to merge their tuples. An example would be two
relations Stars(name, addr) and Studios(name, addr). Although the
schemas look alike, we cannot turn star tuples into studio tuples, or vice-
versa.

On the other hand, when the two relations come from the weak-entity-
set construction, then there can be no such additional value to the relation
with the smaller set of attributes. The reason is that the tuples of the
relation that comes from the supporting relationship correspond one-for-
one with the tuples of the relation that comes from the weak entity set.
Thus, we routinely eliminate the former relation.

a) Revise the diagram of Fig. 4.29 to reflect this new viewpoint.

b) Convert your diagram from (a) into relations. Do you get the same
database schema as in Exercise 4.5.17

Exercise 4.5.3: The E/R diagram of Fig. 4.30 represents ships. Ships are said
to be sisters if they were designed from the same plans. Convert this diagram
to a relational database schema.

Exercise 4.5.4: Convert the following E/R diagrams to relational database
schemas.

a) Figure 4.22.
b) Your answer to Exercise 4.4.1.
¢) Your answer to Exercise 4.4.4(a).

d) Your answer to Exercise 4.4.4(b).



4.6. CONVERTING SUBCLASS STRUCTURES TO RELATIONS 165

toCust Q/ toFlt
\i/

Customers Flights
aircraft
Coane> (%)

sister

Figure 4.30: An E/R diagram about sister ships

4.6 Converting Subclass Structures to Relations

When we have an isa-hierarchy of entity sets, we are presented with several
choices of strategy for conversion to relations. Recall we assume that:

e There is a root entity set for the hierarchy,

o This entity set has a key that serves to identify every entity represented
by the hierarchy, and

o A given entity may have components that belong to the entity sets of any
subtree of the hierarchy, as long as that subtree includes the root.

The principal conversion strategies are:
1. Follow the E/R viewpoint. For each entity set E in the hierarchy, create a

relation that includes the key attributes from the root and any attributes
belonging to E.



166 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

2. Treat entities as objects belonging to a single class. For each possible
subtree that includes the root, create one relation, whose schema includes
all the attributes of all the entity sets in the subtree.

3. Use null values. Create one relation with all the attributes of all the entity
sets in the hierarchy. Each entity is represented by one tuple, and that
tuple has a null value for whatever attributes the entity does not have.

We shall consider each approach in turn.

4.6.1 E/R-Style Conversion

Our first approach is to create a relation for each entity set, as usual. If the
entity set E is not the root of the hierarchy, then the relation for E will include
the key attributes at the root, to identify the entity represented by each tuple,
plus all the attributes of E. In addition, if E is involved in a relationship, then
we use these key attributes to identify entities of E in the relation corresponding
to that relationship.

Note, however, that although we spoke of “isa” as a relationship, it is unlike
other relationships, in that it connects components of a single entity, not distinct
entities. Thus, we do not create a relation for “isa.”

length enre
to Stars g £

Movies
ise is
Murder—
Cartoons Mysteries

Figure 4.31: The movie hierarchy

Example 4.31: Consider the hierarchy of Fig. 4.10, which we reproduce here
as Fig. 4.31. The relations needed to represent the entity sets in this hierarchy
are:

1. Movies(title, year, length, genre). This relation was discussed in
Example 4.24, and every movie is represented by a tuple here.



4.6. CONVERTING SUBCLASS STRUCTURES TO RELATIONS 167

2. MurderMysteries(title, year, weapon). The first two attributes are
the key for all movies, and the last is the lone attribute for the corre-
sponding entity set. Those movies that are murder mysteries have a tuple
here as well as in Movies.

3. Cartoons(title, year). This relation is the set of cartoons. It has
no attributes other than the key for movies, since the extra information
about cartoons is contained in the relationship Voices. Movies that are
cartoons have a tuple here as well as in Movies.

Note that the fourth kind of movie — those that are both cartoons and murder
mysteries — have tuples in all three relations.

In addition, we shall need the relation Voices(title, year, starName)
that corresponds to the relationship Voices between Stars and Cartoons. The
last attribute is the key for Stars and the first two form the key for Cartoons.

For instance, the movie Roger Rabbit would have tuples in all four relations.
Its basic information would be in Movies, the murder weapon would appear
in MurderMysteries, and the stars that provided voices for the movie would
appear in Voices.

Notice that the relation Cartoons has a schema that is a subset of the
schema for the relation Voices. In many situations, we would be content to
eliminate a relation such as Cartoons, since it appears not to contain any
information beyond what is in Voices. However, there may be silent cartoons
in our database. Those cartoons would have no voices, and we would therefore
lose information should we eliminate relation Cartoons. O

4.6.2 An Object-Oriented Approach

An alternative strategy for converting isa-hierarchies to relations is to enumerate
all the possible subtrees of the hierarchy. For each, create one relation that
represents entities having components in exactly those subtrees. The schema
for this relation has all the attributes of any entity set in the subtree. We refer
to this approach as “object-oriented,” since it is motivated by the assumption
that entities are “objects” that belong to one and only one class.

Example 4.32: Consider the hierarchy of Fig. 4.31. There are four possible
subtrees including the root:

1. Movies alone.

2. Mowvies and Cartoons only.

3. Movies and Murder-Mysteries only.
4. All three entity sets.

We must construct relations for all four “classes.” Since only Murder-Mysteries
contributes an attribute that is unique to its entities, there is actually some
repetition, and these four relations are:



168 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Movies(title, year, length, genre)
MoviesC(title, year, length, genre)
MoviesMM(title, year, length, genre, weapon)
MoviesCMM(title, year, length, genre, weapon)

If Cartoons had attributes unique to that entity set, then all four relations would
have different sets of attributes. As that is not the case here, we could com-
bine Movies with MoviesC (i.e., create one relation for non-murder-mysteries)
and combine MoviesMM with MoviesCMM (i.e., create one relation for all mur-
der mysteries), although doing so loses some information — which movies are
cartoons.

We also need to consider how to handle the relationship Voices from Car-
toons to Stars. If Voices were many-one from Cartoons, then we could add a
voice attribute to MoviesC and MoviesCMM, which would represent the Voices
relationship and would have the side-effect of making all four relations different.
However, Voices is many-many, so we need to create a separate relation for this
relationship. As always, its schema has the key attributes from the entity sets
connected; in this case

Voices(title, year, starName)

would be an appropriate schema.

One might consider whether it was necessary to create two such relations,
one connecting cartoons that are not murder mysteries to their voices, and the
other for cartoons that are murder mysteries. However, there does not appear
to be any benefit to doing so in this case. O

4.6.3 Using Null Values to Combine Relations

There is one more approach to representing information about a hierarchy of
entity sets. If we are allowed to use NULL (the null value as in SQL) as a
value in tuples, we can handle a hierarchy of entity sets with a single relation.
This relation has all the attributes belonging to any entity set of the hierarchy.
An entity is then represented by a single tuple. This tuple has NULL in each
attribute that is not defined for that entity.

Example 4.33: If we applied this approach to the diagram of Fig. 4.31, we
would create a single relation whose schema is:

Movie(title, year, length, genre, weapon)

Those movies that are not murder mysteries would have NULL in the weapon
component of their tuple. It would also be necessary to have a relation Voices
to connect those movies that are cartoons to the stars performing the voices,
as in Example 4.32. O



4.6. CONVERTING SUBCLASS STRUCTURES TO RELATIONS 169

4.6.4 Comparison of Approaches

Each of the three approaches, which we shall refer to as “straight-E/R,” “object-
oriented,” and “nulls,” respectively, have advantages and disadvantages. Here
is a list of the principal issues.

1. It can be expensive to answer queries involving several relations, so we
would prefer to find all the attributes we needed to answer a query in one
relation. The nulls approach uses only one relation for all the attributes,
so it has an advantage in this regard. The other two approaches have
advantages for different kinds of queries. For instance:

(a) A query like “what films of 2008 were longer than 150 minutes?” can
be answered directly from the relation Movies in the straight-E/R
approach of Example 4.31. However, in the object-oriented approach
of Example 4.32, we need to examine Movies, MoviesC, MoviesMV,
and MoviesCMM, since a long movie may be in any of these four
relations.

(b) On the other hand, a query like “what weapons were used in cartoons
of over 150 minutes in length?” gives us trouble in the straight-
E/R approach. We must access Movies to find those movies of over
150 minutes. We must access Cartoons to verify that a movie is a
cartoon, and we must access MurderMysteries to find the murder
weapon. In the object-oriented approach, we have only to access the
relation MoviesCMM, where all the information we need will be found.

2. We would like not to use too many relations. Here again, the nulls method
shines, since it requires only one relation. However, there is a difference
between the other two methods, since in the straight-E/R approach, we
use only one relation per entity set in the hierarchy. In the object-oriented
approach, if we have a root and n children (n + 1 entity sets in all), then
there are 2" different classes of entities, and we need that many relations.

3. We would like to minimize space and avoid repeating information. Since
the object-oriented method uses only one tuple per entity, and that tuple
has components for only those attributes that make sense for the entity,
this approach offers the minimum possible space usage. The nulls ap-
proach also has only one tuple per entity, but these tuples are “long”; i.e.,
they have components for all attributes, whether or not they are appro-
priate for a given entity. If there are many entity sets in the hierarchy, and
there are many attributes among those entity sets, then a large fraction
of the space could be wasted in the nulls approach. The straight-E/R
method has several tuples for each entity, but only the key attributes are
repeated. Thus, this method could use either more or less space than the
nulls method.



170 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

QF
3 Depis

ZF isa
Lab computer
Courses allocation

Figure 4.32: E/R diagram for Exercise 4.6.1

Person

Childof

Child Father Mother

Figure 4.33: E/R diagram for Exercise 4.6.2



v

4.7. UNIFIED MODELING LANGUAGE 171

4.6.5 Exercises for Section 4.6

Exercise 4.6.1: Convert the E/R diagram of Fig. 4.32 to a relational database
schema, using each of the following approaches:

a) The straight-E/R method.
b) The object-oriented method.
¢) The nulls method.

Exercise 4.6.2: Convert the E/R diagram of Fig. 4.33 to a relational database
schema, using:

a) The straight-E/R method.
b) The object-oriented method.
¢) The nulls method.

Exercise 4.6.3: Convert your E/R design from Exercise 4.1.7 to a relational
database schema, using:

a) The straight-E/R method.
b) The object-oriented method.
¢) The nulls method.

Exercise 4.6.4: Suppose that we have an isa-hierarchy involving e entity sets.
Each entity set has a attributes, and k of those at the root form the key for all
these entity sets. Give formulas for (i) the minimum and maximum number of
relations used, and (#4) the minimum and maximum number of components that
the tuple(s) for a single entity have all together, when the method of conversion
to relations is:

a) The straight-E/R method.
b) The object-oriented method.
c¢) The nulls method.

4.7 Unified Modeling Language

UML (Unified Modeling Language) was developed originally as a graphical no-
tation for describing software designs in an object-oriented style. It has been
extended, with some modifications, to be a popular notation for describing
database designs, and it is this portion of UML that we shall study here. UML
offers much the same capabilities as the E/R model, with the exception of mul-
tiway relationships. UML also offers the ability to treat entity sets as true
classes, with methods as well as data. Figure 4.34 summarizes the common
concepts, with different terminology, used by E/R and UML.



172 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

UML | E/R Model
Class Entity set
Association Binary relationship
Association Class | Attributes on a relationship
Subclass Isa hierarchy
Aggregation Many-one relationship
Composition Many-one relationship

with referential integrity

Figure 4.34: Comparison between UML and E/R terminology

4.7.1 UML Classes

A class in UML is similar to an entity set in the E/R model. The notation for a
class is rather different, however. Figure 4.35 shows the class that corresponds
to the E/R entity set Movies from our running example of this chapter.

Movies

title PK
year PK
length
genre

<place for methods>

Figure 4.35: The Mowies class in UML

The box for a class is divided into three parts. At the top is the name of
the class. The middle has the attributes, which are like instance variables of a
class. In our Movies class, we use the attributes title, year, length, and genre.

The bottom portion is for methods. Neither the E/R model nor the re-
lational model provides methods. However, they are an important concept,
and one that actually appears in modern relational systems, called “object-
relational” DBMS’s (see Section 10.3).

Example 4.34: We might have added an instance method lengthInHours().
The UML specification doesn’t tell anything more about a method than the
types of any arguments and the type of its return-value. Perhaps this method
returns length/60.0, but we cannot know from the design. 0O

In this section, we shall not use methods in our design. Thus, in the fu-
ture, UML class boxes will have only two sections, for the class name and the
attributes.



4.7. UNIFIED MODELING LANGUAGE 173

4.7.2 Keys for UML classes

As for entity sets, we can declare one key for a UML class. To do so, we follow
each attribute in the key by the letters PK, standing for “primary key.” There
is no convenient way to stipulate that several attributes or sets of attributes
are each keys.

Example 4.35: In Fig. 4.35, we have made our standard assumption that title
and year together form the key for Mowvies. Notice that PK appears on the lines
for these attributes and not for the others. O

4.7.3 Associations

A Dbinary relationship between classes is called an association. There is no
analog of multiway relationships in UML. Rather, a multiway relationship has
to be broken into binary relationships, which as we suggested in Section 4.1.10,
can always be done. The interpretation of an association is exactly what we
described for relationships in Section 4.1.5 on relationship sets. The association
is a set of pairs of objects, one from each of the classes it connects.

Studios 0.1

name PK

address
Movies

Owns 0..*

title PK
year PK
length
genre

Stars

name PK

address

Figure 4.36: Movies, stars, and studios in UML

We draw a UML association between two classes simply by drawing a line
between them, and giving the line a name. Usually, we’ll place the name below
the line. For example, Fig. 4.36 is the UML analog of the E/R diagram of
Fig. 4.17. There are two associations, Stars-in and Ouwns; the first connects
Movies with Stars and the second connects Movies with Studios.

Every association has constraints on the number of objects from each of its
classes that can be connected to an object of the other class. We indicate these
constraints by a label of the form m..n at each end. The meaning of this label
is that each object at the other end is connected to at least m and at most n
objects at this end. In addition:



174 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

e A x in place of n, as in m..x, stands for “infinity.” That is, there is no
upper limit.

e A x alone, in place of m..n, stands for the range 0..x, that is, no constraint
at all on the number of objects.

o If there is no label at all at an end of an association edge, then the label
is taken to be 1..1, i.e., “exactly one.”

Example 4.36: In Fig. 4.36 we see 0..x at the Movies end of both associations.
That says that a star appears in zero or more movies, and a studio owns zero
or more movies; i.e., there is no constraint for either. There is also a 0..x at
the Stars end of association Stars-in, telling us that a movie has any number
of stars. However, the label on the Studios end of association Owns is 0..1,
which means either 0 or 1 studio. That is, a given movie can either be owned
by one studio, or not be owned by any studio in the database. Notice that this
constraint is exactly what is said by the pointed arrow entering Studios in the
E/R diagram of Fig. 4.17. O

Movies R

4 Presidents
tile PK | 1.* 1.1 | Studios 1.1 0.1 [ corth PR
year PK Own name PK Runs name
length wis address address
genre

Figure 4.37: Expressing referential integrity in UML

Example 4.37: The UML diagram of Fig. 4.37 is intended to mirror the E/R
diagram of Fig. 4.18. Here, we see assumptions somewhat different from those in
Example 4.36, about the numbers of movies and studios that can be associated.
The label 1..x at the Movies end of Owns says that each studio must own at
least one movie (or else it isn’t really a studio). There is still no upper limit on
how many movies a studio can own.

At the Studios end of Owns, we see the label 1..1. That label says that a
movie must be owned by one studio and only one studio. It is not possible for
a movie not to be owned by any studio, as was possible in Fig. 4.36. The label
1..1 says exactly what the rounded arrow in E/R diagrams says.

We also see the association Runs between studios and presidents. At the
Studios end we see label 1..1. That is, a president must be the president of one
and only one studio. That label reflects the same constraint as the rounded
arrow from Presidents to Studios in Fig. 4.18. At the other end of association
Runs is the label 0..1. That label says that a studio can have at most one
president, but it could not have a president at some time. This constraint is
exactly the constraint of a pointed arrow. 0O



4.7. UNIFIED MODELING LANGUAGE 175

4.7.4 Self-Associations

An association can have both ends at the same class; such an association is
called a self-association. To distinguish the two roles played by one class in a
self-association, we give the association two names, one for each end.

Movies ..
0.1 TheOriginal

title PK
year PK
length
genre

0..* TheSequel

Figure 4.38: A self-association representing sequels of movies

Example 4.38: Figure 4.38 represents the relationship “sequel-of” on movies.
We see one association with each end at the class Movies. The end with role
TheOriginal points to the original movie, and it has label 0..1. That is, for a
movie to be a sequel, there has to be exactly one movie that was the original.
However, some movies are not sequels of any movie. The other role, TheSequel
has label 0..x. The reasoning is that an original can have any number of sequels.
Note we take the point of view that there is an original movie for any sequence
of sequels, and a sequel is a sequel of the original, not of the previous movie in
the sequence. For instance, Rocky II through Rocky V are sequels of Rocky. We
do not assume Rocky IV is a sequel of Rocky IIlI, and so on. 0O

4.7.5 Association Classes

We can attach attributes to an association in much the way we did in the E/R
model, in Section 4.1.9.3 In UML, we create a new class, called an association
class, and attach it to the middle of the association. The association class
has its own name, but its attributes may be thought of as attributes of the
association to which it attaches.

Example 4.39: Suppose we want to add to the association Stars-in between
Movies and Stars some information about the compensation the star received
for the movie. This information is not associated with the movie (different
stars get different salaries) nor with the star (stars can get different salaries for
different movies). Thus, we must attach this information with the association
itself. That is, every movie-star pair has its own salary information.

Figure 4.39 shows the association Stars-in with an association class called
Compensation. This class has two attributes, salary and residuals. Notice

5However, the example there in Fig. 4.7 will not carry over directly, because the relationship
there is 3-way.



176 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Movies
Stars 0..* Stars—in o.* | title PK
name PK | year PK
address ’ length
Compensation genre
salary
residuals

Figure 4.39: Compensation is an association class for the association Stars-in

that there is no primary key marked for Compensation. When we convert a
diagram such as Fig. 4.39 to relations, the attributes of Compensation will
attach to tuples created for movie-star pairs, as was described for relationships
in Section 4.5.2. DO

4.7.6 Subclasses in UML

Any UML class can have a hierarchy of subclasses below it. The primary
key comes from the root of the hierarchy, just as with E/R hierarchies. UML
permits a class C to have four different kinds of subclasses below it, depending
on our choices of answer to two questions:

1. Complete versus Partial. Is every object in the class C' a member of some
subclass? If so, the subclasses are complete; otherwise they are partial or
incomplete.

2. Disjoint versus Overlapping. Are the subclasses disjoint (an object cannot
be in two of the subclasses)? If an object can be in two or more of the
subclasses, then the subclasses are said to be overlapping.

Note that these decisions are taken at each level of a hierarchy, and the decisions
may be made independently at each point.

There are several interesting relationships between the classification of UML
subclasses given above, the standard notion of subclasses in object-oriented
systems, and the E/R notion of subclasses.

¢ In a typical object-oriented system, subclasses are disjoint. That is, no
object can be in two classes. Of course they inherit properties from their
parent class, so in a sense, an object also “belongs” in the parent class.
However, the object may not also be in a sibling class.

¢ The E/R model automatically allows overlapping subclasses.

e Both the E/R model and object-oriented systems allow either complete
or partial subclasses. That is, there is no requirement that a member of
the superclass be in any subclass.



4.7. UNIFIED MODELING LANGUAGE 177

Subclasses are represented by rectangles, like any class. We assume a sub-
class inherits the properties (attributes and associations) from its superclass.
However, any additional attributes belonging to the subclass are shown in the
box for that subclass, and the subclass may have its own, additional, associ-
ations to other classes. To represent the class/subclass relationship in UML
diagrams, we use a triangular, open arrow pointing to the superclass. The
subclasses are usually connected by a horizontal line, feeding into the arrow.

Movies
title PK
year PK
length
genre
A
Murder— Cartoons Cartoon—Mur—
Mysteries derMysteries
weapon _ | weapon ——— to Voices

Figure 4.40: Cartoons and murder mysteries as disjoint subclasses of movies

Example 4.40: Figure 4.40 shows a UML variant of the subclass example
from Section 4.1.11. However, unlike the E/R subclasses, which are of necessity
overlapping, we have chosen here to make the subclasses disjoint. They are
partial, of course, since many movies are neither cartoons nor murder mysteries.

Because the subclasses were chosen disjoint, there must be a third subclass
for movies like Roger Rabbit that are both cartoons and murder mysteries.
Notice that both the classes MurderMysteries and Cartoon-Murder Mysteries
have additional attribute weapon, while the two subclasses MurderMysteries
and Cartoon-MurderMysteries have associations with the unseen class Voices.
[}

4.7.7 Aggregations and Compositions

There are two special notations for many-one associations whose implications
are rather subtle. In one sense, they reflect the object-oriented style of pro-
gramming, where it is common for one class to have references to other classes
among its attributes. In another sense, these special notations are really stipu-
lations about how the diagram should be converted to relations; we discuss this
aspect of the matter in Section 4.8.3.

An aggregation is a line between two classes that ends in an open diamond
at one end. The implication of the diamond is that the label at that end must



178 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

be 0..1, i.e., the aggregation is a many-one association from the class at the
opposite end to the class at the diamond end. Although the aggregation is an
association, we do not need to name it, since in practice that name will never
be used in a relational implementation.

A composition is similar to an association, but the label at the diamond
end must be 1..1. That is, every object at the opposite end from the diamond
must be connected to exactly one object at the diamond end. Compositions
are distinguished by making the diamond be solid black.

Example 4.41: In Fig. 4.41 we see examples of both an aggregation and a
composition. It both modifies and elaborates on the situation of Fig. 4.37. We
see an association from Mowvies to Studios. The label 1..x at the Mouvies end
says that a studio has to own at least one movie. We do not need a label at
the diamond end, since the open diamond implies a 0..1 label. That is, a movie
may or may not be associated with a studio, but cannot be associated with
more than one studio. There is also the implication that Mouvies objects will
contain a reference to their owning Studios object; that reference may be null
if the movie is not owned by a studio.

MovieExecs
cert# PK
name
address
networth
A

Movies

titte PK L* Studios 0.1 | Presidents

year PK O name PK

length address ‘

genre

Figure 4.41: An aggregation from Mouvies to Studios and a composition from
Presidents to Studios

At the right, we see the class MovieEzecs with a subclass Presidents. There
is a composition from Presidents to Studios. meaning that every president is the
president of exactly one studio. A label 1..1 at the Studios end is implied by the
solid diamond. The implication of the composition is that Presidents objects
will contain a reference to a Studios object, and that this reference cannot be
mull. O



4.8. FROM UML DIAGRAMS TO RELATIONS 179

4.7.8 Exercises for Section 4.7
Exercise 4.7.1: Draw a UML diagram for the problem of Exercise 4.1.1.

Exercise 4.7.2: Modify your diagram from Exercise 4.7.1 in accordance with
the requirements of Exercise 4.1.2.

Exercise 4.7.3: Repeat Exercise 4.1.3 using UML.
Exercise 4.7.4: Repeat Exercise 4.1.6 using UML.

Exercise 4.7.5: Repeat Exercise 4.1.7 using UML. Are your subclasses dis-
joint or overlapping? Are they complete or partial?

Exercise 4.7.6: Repeat Exercise 4.1.9 using UML.
Exercise 4.7.7: Convert the E/R diagram of Fig. 4.30 to a UML diagram.

Exercise 4.7.8: How would you represent the 3-way relationship of Contracts
among movies, stars, and studios (see Fig. 4.4) in UML?

Exercise 4.7.9: Repeat Exercise 4.2.5 using UML.

Exercise 4.7.10: Usually, when we constrain associations with a label of the
form m..n, we find that m and n are each either 0, 1, or . Give some examples
of associations where it would make sense for at least one of m and n to be
something different.

4.8 From UML Diagrams to Relations

Many of the ideas needed to turn E/R diagrams into relations work for UML
diagrams as well. We shall therefore briefly review the important techniques,
dwelling only on points where the two modeling methods diverge.

4.8.1 UML-to-Relations Basics

Here is an outline of the points that should be familiar from our discussion in
Section 4.5:

o Classes to Relations. For each class, create a relation whose name is the
name of the class, and whose attributes are the attributes of the class.

e Associations to Relations. For each association, create a relation with
the name of that association. The attributes of the relation are the key
attributes of the two connected classes. If there is a coincidence of at-
tributes between the two classes, rename them appropriately. If there is
an association class attached to the association, include the attributes of
the association class among the attributes of the relation.



180 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Example 4.42: Consider the UML diagram of Fig. 4.36. For the three classes
we create relations:

Movies(title, year, length genre)
Stars(name, address)
Studios(name, address)

For the two associations, we create relations

Stars-In(movieTitle, movieYear, starName)
Owns (movieTitle, movieYear, studioName)

Note that we have taken some liberties with the names of attributes, for clarity
of intention, even though we were not required to do so.

For another example, consider the UML diagram of Fig. 4.39, which shows
an association class. The relations for the classes Movies and Stars would be
the same as above. However, for the association, we would have a relation

Stars-In(movieTitle, movieYear, starName, salary, residuals)

That is, we add to the key attributes of the associated classes, the two attributes
of the association class Compensation. Note that there is no relation created
for Compensation itself. O

4.8.2 From UML Subclasses to Relations

The three options we enumerated in Section 4.6 apply to UML subclass hierar-
chies as well. Recall these options are “E/R style” (relations for each subclass
have only the key attributes and attributes of that subclass), “object-oriented”
(each entity is represented in the relation for only one subclass), and “use nulls”
(one relation for all subclasses). However, if we have information about whether
subclasses are disjoint or overlapping, and complete or partial, then we may find
one or another method more appropriate. Here are some considerations:

1. If a hierarchy is disjoint at every level, then an object-oriented represen-
tation is suggested. We do not have to consider each possible tree of
subclasses when forming relations, since we know that each object can
belong to only one class and its ancestors in the hierarchy. Thus, there
is no possibility of an exponentially exploding number of relations being
created.

2. If the hierarchy is both complete and disjoint at every level, then the task
is even simpler. If we use the object-oriented approach, then we have only
to construct relations for the classes at the leaves of the hierarchy.

3. If the hierarchy is large and overlapping at some or all levels, then the
E/R approach is indicated. We are likely to need so many relations that
the relational database schema becomes unwieldy.



4.8. FROM UML DIAGRAMS TO RELATIONS 181

4.8.3 From Aggregations and Compositions to Relations

Aggregations and compositions are really types of many-one associations. Thus,
one approach to their representation in a relational database schema is to con-
vert them as we do for any association in Section 4.8.1. Since these elements
are not necessarily named in the UML diagram, we need to invent a name for
the corresponding relation.

However, there is a hidden assumption that this implementation of aggrega-
tions and compositions is undesirable. Recall from Section 4.5.3 that when we
have an entity set E and a many-one relationship R from E to another entity
set F', we have the option — some would say the obligation — to combine the
relation for E with the relation for R. That is, the one relation constructed
from E and R has all the attributes of E plus the key attributes of F.

We suggest that aggregations and compositions be treated routinely in this
manner. Construct no relation for the aggregation or composition. Rather, add
to the relation for the class at the nondiamond end the key attribute(s) of the
class at the diamond end. In the case of an aggregation (but not a composition),
it is possible that these attributes can be null.

Example 4.43: Consider the UML diagram of Fig. 4.41. Since there is a small
hierarchy, we need to decide how MovieEzecs and Presidents will be translated.
Let us adopt the E/R approach, so the Presidents relation has only the cert#
attribute from MovieFzecs.

The aggregation from Movies to Studios is represented by putting the key
name for Studios among the attributes for the relation Movies. The composition
from Presidents to Studios is represented by adding the key for Studios to the
relation Presidents as well. No relations are constructed for the aggregation
or the composition. The following are all the relations we construct from this
UML diagram.

‘MovieExecs(cert#, name, address, netWorth)
Presidents(cert#, studioName)

Movies(title, year, length, genre, studioName)
Studios(name, address)

As before, we take some liberties with names of attributes to make our intentions
clear. O

4.8.4 The UML Analog of Weak Entity Sets

We have not mentioned a UML notation that corresponds to the double-border
notation for weak entity sets in the E/R model. There is a sense in which
none is needed. The reason is that UML, unlike E/R, draws on the tradition
of object-oriented systems, which takes the point of view that each object has
its own object-identity. That is, we can distinguish two objects, even if they
have the same values for each of their attributes and other properties. That
object-identity is typically viewed as a reference or pointer to the object.



182 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

In UML, we can take the point of view that the objects belonging to a
class likewise have object-identity. Thus, even if the stated attributes for a
class do not serve to identify a unique object of the class, we can create a new
attribute that serves as a key for the corresponding relation and represents the
object-identity of the object.

However, it is also possible, in UML, to use a composition as we used sup-
porting relationships for weak entity sets in the E/R model. This composition
goes from the “weak” class (the class whose attributes do not provide its key)
to the “supporting” class. If there are several “supporting” classes, then sev-
eral compositions can be used. We shall use a special notation for a supporting
composition: a small box attached to the weak class with “PK” in it will serve
as the anchor for the supporting composition. The implication is that the key
attribute(s) for the supporting class at the other end of the composition is part
of the key of the weak class, along with any of the attributes of the weak class
that are marked “PK.” As with weak entity sets, there can be several support-
ing compositions and classes, and those supporting classes could themselves be
weak, in which case the rule just described is applied recursively.

Crews Studios
number PK name PK
crewChief address

Figure 4.42: Weak class Crews supported by a composition and the class Studios

Example 4.44: Figure 4.42 shows the analog of the weak entity set Crews of
Example 4.20. There is a composition from Crews to Studios anchored by a
box labeled “PK” to indicate that this composition provides part of the key for
Crews. 0O

We convert weak structures such as Fig. 4.42 to relations exactly as we
did in Section 4.5.4. There is a relation for class Studios as usual. There is
no relation for the composition, again as usual. The relation for class Crews
includes not only its own attribute number, but the key for the class at the end
of the composition, which is Studios.

Example 4.45: The relations for Example 4.44 are thus:

Studios(name, address)
Crevs (number, crewChief, studioName)

As before, we renamed the attribute name of Studios in the Crews relation, for
clarity. 0O



4.9. OBJECT DEFINITION LANGUAGE 183

Customers B Flights
Bookings

SSNo PK 1.1 0.* 0.* 1.1 number PK

name ‘__—‘IE row Ei—" day PK

addr seat aircraft

phone

Figure 4.43: A UML diagram analogous to the E/R diagram of Fig. 4.29

4.8.5 Exercises for Section 4.8

Exercise 4.8.1: Convert the UML diagram of Fig. 4.43 to relations.

Exercise 4.8.2: Convert the following UML diagrams to relations:

a) Figure 4.37.
b) Figure 4.40.
¢) Your solution to Exercise 4.7.1.
d) Your solution to Exercise 4.7.3.
e) Your solution to Exercise 4.7.4.

f) Your solution to Exercise 4.7.6.

! Exercise 4.8.3: How many relations do we create, using the object-oriented
approach, if we have a three-level hierarchy with three subclasses of each class
at the first and second levels, and that hierarchy is:

a) Disjoint and complete at each level.
b) Disjoint but not complete at each level.

¢) Neither disjoint nor complete.

4.9 Object Definition Language

ODL (Object Definition Language) is a text-based language for specifying the
structure of databases in object-oriented terms. Like UML, the class is the
central concept in ODL. Classes in ODL have a name, attributes, and methods,
just as UML classes do. Relationships, which are analogous to UML’s associa-
tions, are not an independent concept in ODL, but are embedded within classes
as an additional family of properties.



184 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.9.1 Class Declarations

A declaration of a class in ODL, in its simplest form, is:

class <name> {
<list of properties>

b

That is, the keyword class is followed by the name of the class and a bracketed
list of properties. A property can be an attribute, a relationship, or a method.

4.9.2 Attributes in ODL

The simplest kind of property is the attribute. In ODL, attributes need not be of
simple types, such as integers and strings. ODL has a type system, described in
Section 4.9.6, that allows us to form structured types and collection types (e.g.,
sets). For example, an attribute address might have a structured type with
fields for the street, city, and zip code. An attribute phones might have a set of
strings as its type, and even more complex types are possible. An attribute is
represented in the declaration for its class by the keyword attribute, the type
of the attribute, and the name of the attribute.

1) class Movie {

2) attribute string title;
3) attribute integer year;
4) attribute integer length;
5) attribute enum Genres

{drama, comedy, sciFi, teen} genre;

};

Figure 4.44: An ODL declaration of the class Movie

Example 4.46: In Fig. 4.44 is an ODL declaration of the class of movies. It
is not a complete declaration; we shall add more to it later. Line (1) declares
Movie to be a class. Following line (1) are the declarations of four attributes
that all Movie objects will have.

Lines (2), (3), and (4) declare three attributes, title, year, and length.
The first of these is of character-string type, and the other two are integers.
Line (5) declares attribute genre to be of enumerated type. The name of the
enumeration (list of symbolic constants) is Genres, and the four values the
attribute genre is allowed to take are drama, comedy, sciFi, and teen. An
enumeration must have a name, which can be used to refer to the same type
anywhere. 0O



4.9. OBJECT DEFINITION LANGUAGE 185

Why Name Enumerations and Structures?

The enumeration-name Genres in Fig. 4.44 appears to play no role. How-
ever, by giving this set of symbolic constants a name, we can refer to it
elsewhere, including in the declaration of other classes. In some other class,
the scoped name Movie: :Genres can be used to refer to the definition of
the enumerated type of this name within the class Movie.

Example 4.47: In Example 4.46, all the attributes have primitive types. Here
is an example with a complex type. We can define the class Star by

1) class Star {
2) attribute string name;
3) attribute Struct Addr
{string street, string city} address;

};

Line (2) specifies an attribute name (of the star) that is a string. Line (3)
specifies another attribute address. This attribute has a type that is a record
structure. The name of this structure is Addr, and the type consists of two
fields: street and city. Both fields are strings. In general, one can define
record structure types in ODL by the keyword Struct and curly braces around
the list of field names and their types. Like enumerations, structure types must
have a name, which can be used elsewhere to refer to the same structure type.
[}

4.9.3 Relationships in ODL

An ODL relationship is declared inside a class declaration, by the keyword
relationship, a type, and the name of the relationship. The type of a re-
lationship describes what a single object of the class is connected to by the
relationship. Typically, this type is either another class (if the relationship is
many-one) or a collection type (if the relationship is one-many or many-many).
We shall show complex types by example, until the full type system is described
in Section 4.9.6.

Example 4.48: Suppose we want to add to the declaration of the Movie class
from Example 4.46 a property that is a set of stars. More precisely, we want
each Movie object to connect the set of Star objects that are its stars. The
best way to represent this connection between the Movie and Star classes is
with a relationship. We may represent this relationship by a line:

relationship Set<Star> stars;



186 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

in the declaration of class Movie. It says that in each object of class Movie there
is a set of references to Star objects. The set of references is called stars. O

4.9.4 Inverse Relationships

Just as we might like to access the stars of a given movie, we might like to
know the movies in which a given star acted. To get this information into Star
objects, we can add the line

relationship Set<Movie> starredIn;

to the declaration of class Star in Example 4.47. However, this line and a
similar declaration for Movie omits a very important aspect of the relationship
between movies and stars. We expect that if a star S is in the stars set for
movie M, then movie M is in the starredIn set for star S. We indicate this
connection between the relationships stars and starredIn by placing in each of
their declarations the keyword inverse and the name of the other relationship.
If the other relationship is in some other class, as it usually is, then we refer
to that relationship by its scoped name — the name of its class, followed by a
double colon (::) and the name of the relationship.

Example 4.49: To define the relationship starredIn of class Star to be the
inverse of the relationship stars in class Movie, we revise the declarations of
these classes, as shown in Fig. 4.45 (which also contains a definition of class
Studio to be discussed later). Line (6) shows the declaration of relationship
stars of movies, and says that its inverse is Star: :starredIn. Since relation-
ship starredIn is defined in another class, its scoped name must be used.

Similarly, relationship starredIn is declared in line (11). Its inverse is
declared by that line to be stars of class Movie, as it must be, because inverses
always are linked in pairs. O

As a general rule, if a relationship R for class C associates with object & of
class C with objects y1, 92, ... ,yn of class D, then the inverse relationship of R
associates with each of the y;’s the object z (perhaps along with other objects).

4.9.5 Multiplicity of Relationships

Like the binary relationships of the E/R model, a pair of inverse relationships
in ODL can be classified as either many-many, many-one in either direction, or
one-one. The type declarations for the pair of relationships tells us which.

1. If we have a many-many relationship between classes C' and D, then in
class C the type of the relationship is Set<D>, and in class D the type is
Set<(C>.6

6 Actually, the Set could be replaced by another “collection type,” such as list or bag,
as discussed in Section 4.9.6. We shall assume all collections are sets in our exposition of
relationships, however.



4.9. OBJECT DEFINITION LANGUAGE 187

1)
2)
3)
4)
5)

6)

[p)

8)
9)
10)

11)

12)
13)
14)
15)

class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Genres
{drama, comedy, sciFi, teen} genre;

relationship Set<Star> stars

inverse Star::starredln;
relationship Studio ownedBy

inverse Studio::owns;

};

class Star {
attribute string name;
attribute Struct Addr
{string street, string city} address;
relationship Set<Movie> starredIn
inverse Movie::stars;

};

class Studio {
attribute string name;
attribute Star::Addr address;
relationship Set<Movie> owns
inverse Movie::ownedBy;

};

Figure 4.45: Some ODL classes and their relationships

2. If the relationship is many-one from C to D, then the type of the rela-
tionship in C is just D, while the type of the relationship in D is Set<C>.

3. If the relationship is many-one from D to C, then the roles of C and D
are reversed in (2) above.

4. If the relationship is one-one, then the type of the relationship in C is just
D, and in D it is just C.

Note that, as in the E/R model, we allow a many-one or one-one relationship
to include the case where for some objects the “one” is actually “none.” For
instance, a many-one relationship from C' to D might have a “null” value of
the relationship in some of the C' objects. Of course, since a D object could
be associated with any set of C objects, it is also permissible for that set to be
empty for some D objects.



188 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Example 4.50: In Fig. 4.45 we have the declaration of three classes, Movie,
Star, and Studio. The first two of these have already been introduced in
Examples 4.46 and 4.47. We also discussed the relationship pair stars and
starredIn. Since each of their types uses Set, we see that this pair represents
a many-many relationship between Star and Movie.

Studio objects have attributes name and address; these appear in lines (13)
and (14). We have used the same type for addresses of studios as we defined in
class Star for addresses of stars.

In line (7) we see a relationship ownedBy from movies to studios, and the
inverse of this relationship is owns on line (15). Since the type of ownedBy is
Studio, while the type of owns is Set<Movie>, we see that this pair of inverse
relationships is many-one from Movie to Studio. O

4.9.6 Types in ODL

ODL offers the database designer a type system similar to that found in C or
other conventional programming languages. A type system is built from a basis
of types that are defined by themselves and certain recursive rules whereby
complex types are built from simpler types. In ODL, the basis consists of:

1. Primitive types: integer, float, character, character string, boolean, and
enumerations. The latter are lists of symbolic names, such as drama in
line (5) of Fig. 4.45.

2. Class names, such as Movie, or Star, which represent types that are
actually structures, with components for each of the attributes and rela-
tionships of that class.

These types are combined into structured types using the following type
constructors:

1. Set. If T is any type, then Set<T> denotes the type whose values are finite
sets of elements of type T'. Examples using the set type-constructor occur
in lines (6), (11), and (15) of Fig. 4.45.

2. Bag. If T is any type, then Bag<T> denotes the type whose values are
finite bags or multisets of elements of type T'.

3. List. If T is any type, then List<T> denotes the type whose values are
finite lists of zero or more elements of type T

4. Array. I T is a type and ¢ is an integer, then Array<T,i> denotes the
type whose elements are arrays of i elements of type T. For example,
Array<char, 10> denotes character strings of length 10.

5. Dictionary. If T and S are types, then Dictionary<T,S> denotes a type
whose values are finite sets of pairs. Each pair consists of a value of the
key type T and a value of the range type S. The dictionary may not
contain two pairs with the same key value.



4.9. OBJECT DEFINITION LANGUAGE 189

Sets, Bags, and Lists

To understand the distinction between sets, bags, and lists, remember that
a set has unordered elements, and only one occurrence of each element. A
bag allows more than one occurrence of an element, but the elements and
their occurrences are unordered. A list allows more than one occurrence of
an element, but the occurrences are ordered. Thus, {1,2,1} and {2,1,1}
are the same bag, but (1,2,1) and (2,1, 1) are not the same list.

6. Structures. If Ty, Ts,... ,Ty, are types, and Fi, F»,... , F, are names of
fields, then

Struct N {T, F;, T2 Fo,..., Tp Fp}

denotes the type named N whose elements are structures with n fields.
The ith field is named F; and has type T;. For example, line (10) of
Fig. 4.45 showed a structure type named Addr, with two fields. Both
fields are of type string and have names street and city, respectively.

The first five types — set, bag, list, array, and dictionary — are called
collection types. There are different rules about which types may be associated
with attributes and which with relationships.

e The type of a relationship is either a class type or a single use of a collec-
tion type constructor applied to a class type.

o The type of an attribute is built starting with a primitive type or types.”
We may then apply the structure and collection type constructors as we
wish, as many times as we wish.

Example 4.51: Some of the possible types of attributes are:

1. integer.
2. Struct N {string fieldl, integer field2}.
3. List<real>.

4. Array<Struct N {string fieldl, integer field2}, 10>.

7Class types may also be used, which makes the attribute behave like a “one-way” rela-
tionship. We shall not consider such attributes here.



190 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Example (1) is a primitive type, (2) is a structure of primitive types, (3) a
collection of a primitive type, and (4) a collection of structures built from
primitive types.

Now, suppose the class names Movie and Star are available primitive types.
Then we may construct relationship types such as Movie or Bag<Star>. How-
ever, the following are illegal as relationship types:

1. Struct N {Movie fieldl, Star field2}. Relationship types cannot
involve structures.

2. Set<integer>. Relationship types cannot involve primitive types.

3. Set<Array<Star, 10>>. Relationship types cannot involve two applica-
tions of collection types.

O

4.9.7 Subclasses in ODL

We can declare one class C to be a subclass of another class D. To do so,
follow the name C in its declaration with the keyword extends and the name
D. Then, class C inherits all the properties of D, and may have additional
properties of its own.

Example 4.52: Recall Example 4.10, where we declared cartoons to be a
subclass of movies, with the additional property of a relationship from a cartoon
to a set of stars that are its “voices.” We can create a subclass Cartoon for
Movie with the ODL declaration:

class Cartoon extends Movie {
relationship Set<Star> voices;

};

Also in that example, we defined a class of murder mysteries with additional
attribute weapon.

class MurderMystery extends Movie {
attribute string weapon;

};
is a suitable declaration of this subclass. O

Sometimes, as in the case of a movie like “Roger Rabbit,” we need a class
that is a subclass of two or more other classes at the same time. In ODL, we
may follow the keyword extends by several classes, separated by colons.® Thus,
we may declare a fourth class by:

8Technically, the second and subsequent names must be “interfaces,” rather than classes.
Roughly, an interface in ODL is a class definition without an associated set of objects.



4.9. OBJECT DEFINITION LANGUAGE 191

class CartoonMurderMystery
extends MurderMystery : Cartoon;

Note that when there is multiple inheritance, there is the potential for a
class to inherit two properties with the same name. The way such conflicts are
resolved is implementation-dependent.

4.9.8 Declaring Keys in ODL

The declaration of a key or keys for a class is optional. The reason is that
ODL, being object-oriented, assumes that all objects have an object-identity,
as discussed in connection with UML in Section 4.8.4.

In ODL we may declare one or more attributes to be a key for a class by using
the keyword key or keys (it doesn’t matter which) followed by the attribute
or attributes forming keys. If there is more than one attribute in a key, the
list of attributes must be surrounded by parentheses. The key declaration itself
appears inside parentheses, following the name of the class itself in the first line
of its declaration.

Example 4.53 : To declare that the set of two attributes title and year form
a key for class Movie, we could begin its declaration:

class Movie (key (title, year)) {

We could have used keys in place of key, even though only one key is declared.
O

It is possible that several sets of attributes are keys. If so, then following
the word key(s) we may place several keys separated by commas. A key that
consists of more than one attribute must have parentheses around the list of its
attributes, so we can disambiguate a key of several attributes from several keys
of one attribute each.

The ODL standard also allows properties other than attributes to appear
in keys. There is no fundamental problem with a method or relationship being
declared a key or part of a key, since keys are advisory statements that the
DBMS can take advantage of or not, as it wishes. For instance, one could
declare a method to be a key, meaning that on distinct objects of the class the
method is guaranteed to return distinct values.

When we allow many-one relationships to appear in key declarations, we
can get an effect similar to that of weak entity sets in the E/R model. We can
declare that the object O; referred to by an object Oz on the “many” side of the
relationship, perhaps together with other properties of O that are included in
the key, is unique for different objects O2. However, we should remember that
there is no requirement that classes have keys; we are never obliged to handle,
in some special way, classes that lack attributes of their own to form a key, as
we did for weak entity sets.



-

192 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Example 4.54: Let us review the example of a weak entity set Crews in
Fig. 4.20. Recall that we hypothesized that crews were identified by their
number, and the studio for which they worked, although two studios might
have crews with the same number. We might declare the class Crew as in
Fig. 4.46. Note that we should modify the declaration of Studio to include the
relationship crews0f that is an inverse to the relationship unit0f in Crew; we
omit this change.

class Crew (key (number, unitDf)) {
attribute integer number;
attribute string crewChief;
relationship Studio unitOf
inverse Studio::crews0f;

Figure 4.46: A ODL declaration for crews

What this key declaration asserts is that there cannot be two crews that
both have the same value for the number attribute and are related to the same
studio by unit0f. Notice how this assertion resembles the implication of the
E/R diagram in Fig. 4.20, which is that the number of a crew and the name of
the related studio (i.e., the key for studios) uniquely determine & crew entity.
O

4.9.9 Exercises for Section 4.9

Exercise 4.9.1: In Exercise 4.1.1 was the informal description of a bank data-
base. Render this design in ODL, including keys as appropriate.

Exercise 4.9.2: Modify your design of Exercise 4.9.1 in the ways enumerated
in Exercise 4.1.2. Describe the changes; do not write a complete, new schema.

Exercise 4.9.3: Render the teams-players-fans database of Exercise 4.1.3 in
ODL, including keys, as appropriate. Why does the complication about sets
of team colors, which was mentioned in the original exercise, not present a
problem in ODL?

Exercise 4.9.4: Suppose we wish to keep a genealogy. We shall have one class,
Person. The information we wish to record about persons includes their name
(an attribute) and the following relationships: mother, father, and children.
Give an ODL design for the Person class. Be sure to indicate the inverses of
the relationships that, like mother, father, and children, are also relationships
from Person to itself. Is the inverse of the mother relationship the children
relationship? Why or why not? Describe each of the relationships and their
inverses as sets of pairs.



4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 193

Exercise 4.9.5: Let us add to the design of Exercise 4.9.4 the attribute
education. The value of this attribute is intended to be a collection of the
degrees obtained by each person, including the name of the degree (e.g., B.S.),
the school, and the date. This collection of structs could be a set, bag, list,
or array. Describe the consequences of each of these four choices. What infor-
mation could be gained or lost by making each choice? Is the information lost
likely to be important in practice?

Exercise 4.9.6: In Exercise 4.4.4 we saw two examples of situations where
weak entity sets were essential. Render these databases in ODL, including
declarations for suitable keys.

Exercise 4.9.7: Give an ODL design for the registrar’s database described in
Exercise 4.1.9.

! Exercise 4.9.8: Under what circumstances is a relationship its own inverse?

Hint: Think about the relationship as a set of pairs, as discussed in Sec-
tion 4.9.4.

4.10 From ODL Designs to Relational Designs

ODL was actually intended as the data-definition part of a language standard
for object-oriented DBMS’s, analogous to the SQL CREATE TABLE statement.
Indeed, there have been some attempts to implement such a system. However,
it is also possible to see ODL as a text-based, high-level design notation, from
which we eventually derive a relational database schema. Thus, in this section
we shall consider how to convert ODL designs into relational designs.

Much of the process is similar to that we discussed for E/R diagrams in
Section 4.5 and for UML in Section 4.8. Classes become relations, and relation-
ships become relations that connect the key attributes of the classes involved
in the relationship. Yet some new problems arise for ODL, including:

1. Entity sets must have keys, but there is no such guarantee for ODL classes.

2. While attributes in E/R, UML, and the relational model are of primitive
type, there is no such constraint for ODL attributes.

4.10.1 From ODL Classes to Relations

As a starting point, let us assume that our goal is to have one relation for each
class and for that relation to have one attribute for each property. We shall see
many ways in which this approach must be modified, but for the moment, let
us consider the simplest possible case, where we can indeed convert classes to
relations and properties to attributes. The restrictions we assume are:

1. All properties of the class are attributes (not relationships or methods).



194 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

2. The types of the attributes are primitive (not structures or sets).

In this case, the ODL class looks almost, like an entity set or a UML class. Al-
though there might be no key for the ODL class, ODL assumes object-identity.
We can create an artificial attribute to represent the object-identity and serve
as a key for the relation; this issue was introduced for UML in Section 4.8.4.

Example 4.55: Figure 4.47 is an ODL description of movie executives. No
key is listed, and we do not assume that name uniquely determines a movie
executive (unlike stars, who will make sure their chosen name is unique).

class MovieExec {
attribute string name;
attribute string address;
attribute integer netWorth;

};

Figure 4.47: The class MovieExec

We create a relation with the same name as the class. The relation has four
attributes, one for each attribute of the class, and one for the object-identity:

MovieExecs(cert#, name, address, netWorth)

We use cert# as the key attribute, representing the object-identity. O

4.10.2 Complex Attributes in Classes

Even when a class’ properties are all attributes we may have some difficulty
converting the class to a relation. The reason is that attributes in ODL can
have complex types such as structures, sets, bags, or lists. On the other hand,
a fundamental principle of the relational model is that a relation’s attributes
have a primitive type, such as numbers and strings. Thus, we must find some
way to represent complex attribute types as relations.

Record structures whose fields are themselves primitive are the easiest to
handle. We simply expand the structure definition, making one attribute of the
relation for each field of the structure.

class Star (key name) {
attribute string name;
attribute Struct Addr
{string street, string city} address;

};

Figure 4.48: Class with a structured attribute



4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 195

Example 4.56: In Fig. 4.48 is a declaration for class Star, with only attributes
as properties. The attribute name is of primitive type, but attribute address
is a structure with two fields, street and city. We represent this class by the
relation:

Star(name, street, city)

The key is name, and the attributes street and city represent the structure
address. O

4.10.3 Representing Set-Valued Attributes

However, record structures are not the most complex kind of attribute that can
appear in ODL class definitions. Values can also be built using type constructors
Set, Bag, List, Array, and Dictionary from Section 4.9.6. Each presents its
own problems when migrating to the relational model. We shall only discuss
the Set constructor, which is the most common, in detail.

One approach to representing a set of values for an attribute A is to make
one tuple for each value. That tuple includes the appropriate values for all
the other attributes besides A. This approach works, although it is likely to
produce unnormalized relations, as we shall see in the next example.

class Star (key name) {
attribute string name;
attribute Set<
Struct Addr {string street, string city}
> address;
attribute Date birthdate;
};

Figure 4.49: Stars with a set of addresses and a birthdate

Example 4.57: Figure 4.49 shows a new definition of the class Star, in which
we have allowed stars to have a set of addresses and also added a nonkey,
primitive attribute birthdate. The birthdate attribute can be an attribute
of the Star relation, whose schema now becomes:

Star(name, street, city, birthdate)

Unfortunately, this relation exhibits the sort of anomalies we saw in Sec-
tion 3.3.1. If Carrie Fisher has two addresses, say a home and a beach house,
then she is represented by two tuples in the relation Star. If Harrison Ford has
an empty set of addresses, then he does not appear at all in Star. A typical
set of tuples for Star is shown in Fig. 4.50.



196 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

name | street | city | birthdate
Carrie Fisher | 123 Maple St. | Hollywood | 9/9/99
Carrie Fisher | 5 Locust Ln. | Malibu 9/9/99
Mark Hamill 456 Dak Rd. Brentwood | 8/8/88

Figure 4.50: Adding birthdates

Although name is a key for the class Star, our need to have several tuples
for one star to represent all their addresses means that name is not a key for
the relation Star. In fact, the key for that relation is {name, street, city}.
Thus, the functional dependency

name — birthdate
is a BCNF violation and the multivalued dependency
name — street city
is a 4NF violation as well. O

There are several options regarding how to handle set-valued attributes that
appear in a class declaration along with other attributes, set-valued or not. One
approach is to separate out each set-valued attribute as if it were a many-many
relationship between the objects of the class and the values that appear in the
sets.

An alternative approach is to place all attributes, set-valued or not, in the
schema for the relation, then use the normalization techniques of Sections 3.3
and 3.6 to eliminate the resulting BCNF and 4NF violations. Notice that any
set-valued attribute in conjunction with any single-valued attribute leads to a
BNCF violation, as in Example 4.57. Two set-valued attributes in the same
class declaration will lead to a 4NF violation, even if there are no single-valued
attributes.

4.10.4 Representing Other Type Constructors

Besides record structures and sets, an ODL class definition could use Bag, List,
Array, or Dictionary to construct values. To represent a bag (multiset), in
which a single object can be a member of the bag n times, we cannot simply
introduce into a relation n identical tuples.® Instead, we could add to the
relation schema another attribute count representing the number of times that

9To be precise, we cannot introduce identical tuples into relations of the abstract relational
model described in Section 2.2. However, SQL-based relational DBMS’s do allow duplicate
tuples; i.e., relations are bags rather than sets in SQL. See Sections 5.1 and 6.4. If queries
are likely to ask for tuple counts, we advise using a scheme such as that described here, even
if your DBMS allows duplicate tuples.



4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 197

each element is a member of the bag. For instance, suppose that address
in Fig. 4.49 were a bag instead of a set. We could say that 123 Maple St.,
Hollywood is Carrie Fisher’s address twice and 5 Locust Ln., Malibu is her
address 3 times (whatever that may mean) by

name | street | city | count
Carrie Fisher | 123 Maple St. | Hollywood | 2
Carrie Fisher { 5 Locust Ln. Malibu 3

A list of addresses could be represented by a new attribute position, in-
dicating the position in the list. For instance, we could show Carrie Fisher’s
addresses as a list, with Hollywood first, by:

name | street | city | position
Carrie Fisher | 123 Maple St. | Hollywood | 1
Carrie Fisher | 5 Locust Ln. Malibu 2

A fixed-length array of addresses could be represented by attributes for
each position in the array. For instance, if address were to be an array of two
street-city structures, we could represent Star objects as:

name | streett | cityl | street? | city2
Carrie Fisher | 123 Maple St. l Hollywood | 6 Locust Ln. | Malibu

Finally, a dictionary could be represented as a set, but with attributes for
both the key-value and range-value components of the pairs that are members of
the dictionary. For instance, suppose that instead of star’s addresses, we really
wanted to keep, for each star, a dictionary giving the mortgage holder for each
of their homes. Then the dictionary would have address as the key value and
bank name as the range value. A hypothetical rendering of the Carrie-Fisher
object with a dictionary attribute is:

name | street | city | mortgage-holder

Carrie Fisher | 123 Maple St. | Hollywood | Bank of Burbank
Carrie Fisher | 5 Locust Ln. Malibu Torrance Trust

Of course attribute types in ODL may involve more than one type construc-
tor. If a type is any collection type besides dictionary applied to a structure
(e.g., a set of structs), then we may apply the techniques from Sections 4.10.3
or 4.10.4 as if the struct were an atomic value, and then replace the single at-
tribute representing the atomic value by several attributes, one for each field of
the struct. This strategy was used in the examples above, where the address
is a struct. The case of a dictionary applied to structs is similar and left as an
exercise.

There are many reasons to limit the complexity of attribute types to an
optional struct followed by an optional collection type. We mentioned in Sec-
tion 4.1.1 that some versions of the E/R model allow exactly this much gener-
ality in the types of attributes, although we restricted ourselves to attributes of



198 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

primitive type in the E/R model. We recommend that, if you are going to use
an ODL design for the purpose of eventual translation to a relational database
schema, you similarly limit yourself. We take up in the exercises some options
for dealing with more complex types as attributes.

4.10.5 Representing ODL Relationships

Usually, an ODL class definition will contain relationships to other ODL classes.
As in the E/R model, we can create for each relationship a new relation that
connects the keys of the two related classes. However, in ODL, relationships
come in inverse pairs, and we must create only one relation for each pair.

When a relationship is many-one, we have an option to combine it with the
relation that is constructed for the class on the “many” side. Doing so has the
effect of combining two relations that have a common key, as we discussed in
Section 4.5.3. It therefore does not cause a BCNF violation and is a legitimate
and commonly followed option.

4.10.6 Exercises for Section 4.10

Exercise 4.10.1: Convert your ODL designs from the following exercises to
relational database schemas.

a) Exercise 4.9.1.

b) Exercise 4.9.2 (include all four of the modifications specified by that ex-
ercise).

c) Exercise 4.9.3.
d) Exercise 4.9.4.
e) Exercise 4.9.5.

Exercise 4.10.2: Consider an attribute of type Dictionary with key and
range types both structs of primitive types. Show how to convert a class with
an attribute of this type to a relation.

Exercise 4.10.3: We mentioned that when attributes are of a type more com-
plex than a collection of structs, it becomes tricky to convert them to relations;
in particular, it becomes necessary to create some intermediate concepts and re-
lations for them. The following sequence of questions will examine increasingly
more complex types and how to represent them as relations.

a} A card can be represented as a struct with fields rank (2,3,... ,10, Jack,
Queen, King, and Ace) and suit (Clubs, Diamonds, Hearts, and Spades).
Give a suitable definition of a structured type Card. This definition should
be independent of any class declarations but available to them all.



4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 199

b) A handis a set of cards. The number of cards may vary. Give a declaration
of a class Hand whose objects are hands. That is, this class declaration
has an attribute theHand, whose type is a hand.

! ¢) Convert your class declaration Hand from (b) to a relation schema.
d) A poker hand is a set of five cards. Repeat (b) and (c) for poker hands.
1e) A dealis a set of pairs, each pair consisting of the name of a player and a
hand for that player. Declare a class Deal, whose objects are deals. That
is, this class declaration has an attribute theDeal, whose type is a deal.

f) Repeat (e), but restrict hands of a deal to be hands of exactly five cards.

g) Repeat (e), using a dictionary for a deal. You may assume the names of
players in a deal are unique.

' h) Convert your class declaration from (e) to a relational database schema.

i) Suppose we defined deals to be sets of sets of cards, with no player as-
sociated with each hand (set of cards). It is proposed that we represent
such deals by a relation schema Deals(deallID, card), meaning that the
card was a member of one of the hands in the deal with the given ID.
What, if anything, is wrong with this representation? How would you fix
the problem?

Exercise 4.10.4: Suppose we have a class C defined by

class C (key a) {
attribute string a;
attribute T b;

3

where T is some type. Give the relation schema for the relation derived from
C and indicate its key attributes if T is:

a) Set<Struct S {string f, string g}>
! b) Bag<Struct S {string f, string g}>
!¢) List<Struct S {string £, string }>

! d) Dictionary<Struct K {string f, string g}, Struct R {string i,
string j}>



200 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.11 Summary of Chapter 4

4 The Entity-Relationship Model: In the E/R model we describe entity
sets, relationships among entity sets, and attributes of entity sets and
relationships. Members of entity sets are called entities.

4 Entity-Relationship Diagrams: We use rectangles, diamonds, and ovals to
draw entity sets, relationships, and attributes, respectively.

<+ Multiplicity of Relationships: Binary relationships can be one-one, many-
one, or many-many. In a one-one relationship, an entity of either set
can be associated with at most one entity of the other set. In a many-one
relationship, each entity of the “many” side is associated with at most one
entity of the other side. Many-many relationships place no restriction.

4+ Good Design: Designing databases effectively requires that we represent
the real world faithfully, that we select appropriate elements (e.g., rela-
tionships, attributes), and that we avoid redundancy — saying the same
thing twice or saying something in an indirect or overly complex manner.

4+ Subclasses: The E/R model uses a special relationship isa to represent
the fact that one entity set is a special case of another. Entity sets may be
connected in a hierarchy with each child node a special case of its parent.
Entities may have components belonging to any subtree of the hierarchy,
as long as the subtree includes the root.

4+ Weak Entity Sets: These require attributes of some supporting entity
set(s) to identify their own entities. A special notation involving diamonds
and rectangles with double borders is used to distinguish weak entity sets.

+ Converting Entity Sets to Relations: The relation for an entity set has one
attribute for each attribute of the entity set. An exception is a weak entity
set E, whose relation must also have attributes for the key attributes of
its supporting entity sets.

4+ Converting Relationships to Relations: The relation for an E/R relation-
ship has attributes corresponding to the key attributes of each entity
set that participates in the relationship. However, if a relationship is a
supporting relationship for some weak entity set, it is not necessary to
produce a relation for that relationship.

4+ Converting Isa Hierarchies to Relations: One approach is to create a
relation for each entity set with the key attributes of the hierarchy’s root
plus the attributes of the entity set itself. A second approach is to create
a relation for each possible subset of the entity sets in the hierarchy, and
create for each entity one tuple; that tuple is in the relation for exactly
the set of entity sets to which the entity belongs. A third approach is to
create only one relation and to use null values for those attributes that
do not apply to the entity represented by a given tuple.



4.11. SUMMARY OF CHAPTER 4 201

4+ Unified Modeling Language: In UML, we describe classes and associa-
tions between classes. Classes are analogous to E/R entity sets, and
associations are like binary E/R relationships. Special kinds of many-
one associations, called aggregations and compositions, are used and have
implications as to how they are translated to relations.

4+ UML Subclass Hierarchies: UML permits classes to have subclasses, with
inheritance from the superclass. The subclasses of a class can be complete
or partial, and they can be disjoint or overlapping.

4+ Converting UML Diagrams to Relations: The methods are similar to
those used for the E/R model. Classes become relations and associations
become relations connecting the keys of the associated classes. Aggrega-
tions and compositions are combined with the relation constructed from
the class at the “many” end.

4+ Object Definition Language: This language is a notation for formally de-
scribing the schemas of databases in an object-oriented style. One defines
classes, which may have three kinds of properties: attributes, methods,
and relationships.

4 ODL Relationships: A relationship in ODL must be binary. It is repre-
sented, in the two classes it connects, by names that are declared to be
inverses of one another. Relationships can be many-many, many-one, or
one-one, depending on whether the types of the pair are declared to be a
single object or a set of objects.

4 The ODL Type System: ODL allows types to be constructed, beginning
with class names and atomic types such as integer, by applying any of the
following type constructors: structure formation, set-of, bag-of, list-of,
array-of, and dictionary-of.

4 Keys in ODL: Keys are optional in ODL. We can declare one or more keys,
but because objects have an object-ID that is not one of its properties, a
system implementing ODL can tell the difference between objects, even
if they have identical values for all properties.

4 Converting ODL Classes to Relations: The method is the same as for
E/R or UML, except if the class has attributes of complex type. If that
happens the resulting relation may be unnormalized and will have to
be decomposed. It may also be necessary to create a new attribute to
represent the object-identity of objects and serve as a key.

4 Converting ODL Relationships to Relations: The method is the same as
for E/R relationships, except that we must first pair ODL relationships
and their inverses, and create only one relation for the pair.



202 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.12 References for Chapter 4

The original paper on the Entity-Relationship model is [5]. Two books on the
subject of E/R design are [2] and [7].

The manual defining ODL is [4]. One can also find more about the history
of object-oriented database systems from [1], [3], and [6].

1. F. Bancilhon, C. Delobel, and P. Kanellakis, Building an Object-Oriented
Database System, Morgan-Kaufmann, San Francisco, 1992.

2. Carlo Batini, S. Ceri, S. B. Navathe, and Carol Batini, Conceptual Data-
base Design: an Entity/Relationship Approach, Addison-Wesley, Boston
MA, 1991.

3. R. G. G. Cattell, Object Data Management, Addison-Wesley, Reading,
MA, 1994.

4. R. G. G. Cattell (ed.), The Object Database Standard: ODMG-99, Mor-
gan-Kaufmann, San Francisco, 1999.

5. P. P. Chen, “The entity-relationship model: toward a unified view of
data,” ACM Trans. on Database Systems 1:1, pp. 9-36, 1976.

6. W. Kim (ed.), Modern Database Systems: The Object Model, Interoper-
ability, and Beyond, ACM Press, New York, 1994.

7. B. Thalheim, “Fundamentals of Entity-Relationship Modeling,” Spring-
er-Verlag, Berlin, 2000.



Part 11

Relational Database
Programming

203






Chapter 5

Algebraic and Logical
Query Languages

We now switch our attention from modeling to programming for relational
databases. We start in this discussion with two abstract programming lan-
guages, one algebraic and the other logic-based. The algebraic programming
language, relational algebra, was introduced in Section 2.4, to let us see what
operations in the relational model look like. However, there is more to the al-
gebra. In this chapter, we extend the set-based algebra of Section 2.4 to bags,
which better reflect the way the relational model is implemented in practice.
We also extend the algebra so it can handle several more operations than were
described previously; for example, we need to do aggregations (e.g., averages)
of columns of a relation.

We close the chapter with another form of query language, based on logic.
This language, called “Datalog,” allows us to express queries by describing the
desired results, rather than by giving an algorithm to compute the results, as
relational algebra requires.

5.1 Relational Operations on Bags

In this section, we shall consider relations that are bags (multisets) rather than
sets. That is, we shall allow the same tuple to appear more than once in a
relation. When relations are bags, there are changes that need to be made to
the definition of some relational operations, as we shall see. First, let us look
at a simple example of a relation that is a bag but not a set.

Example 5.1: The relation in Fig. 5.1 is a bag of tuples. In it, the tuple
(1,2) appears three times and the tuple (3,4) appears once. If Fig. 5.1 were
a set-valued relation, we would have to eliminate two occurrences of the tuple
(1,2). In a bag-valued relation, we do allow multiple occurrences of the same
tuple, but like sets, the order of tuples does not matter. DO

205



206 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

v—sn-o:o-n“;;,;
SN

Figure 5.1: A bag

5.1.1 Why Bags?

As we mentioned, commercial DBMS’s implement relations that are bags, rather
than sets. An important motivation for relations as bags is that some relational
operations are considerably more efficient if we use the bag model. For example:

1. To take the union of two relations as bags, we simply copy one relation
and add to the copy all the tuples of the other relation. There is no
need to eliminate duplicate copies of a tuple that happens to be in both
relations.

2. When we project relation as sets, we need to compare each projected tuple
with all the other projected tuples, to make sure that each projection
appears only once. However, if we can accept a bag as the result, then
we simply project each tuple and add it to the result; no comparison with
other projected tuples is necessary.

Al B|C
112165
31416
11247
11218

Figure 5.2: Bag for Example 5.2

Example 5.2: The bag of Fig. 5.1 could be the result of projecting the relation
shown in Fig. 5.2 onto attributes A and B, provided we allow the result to be
a bag and do not eliminate the duplicate occurrences of (1,2). Had we used
the ordinary projection operator of relational algebra, and therefore eliminated
duplicates, the result would be only:

w P la
& Ny



5.1. RELATIONAL OPERATIONS ON BAGS 207

Note that the bag result, although larger, can be computed more quickly, since
there is no need to compare each tuple (1,2) or (3,4) with previously generated
tuples. O

Another motivation for relations as bags is that there are some situations
where the expected answer can only be obtained if we use bags, at least tem-
porarily. Here is an example.

Example 5.3: Suppose we want to take the average of the A-components of
a set-valued relation such as Fig. 5.2. We could not use the set model to think
of the relation projected onto attribute A. As a set, the average value of A is
2, because there are only two values of A — 1 and 3 — in Fig. 5.2, and their
average is 2. However, if we treat the A-column in Fig. 5.2 as a bag {1,3,1,1},
we get the correct average of A, which is 1.5, among the four tuples of Fig. 5.2.
O

5.1.2 Union, Intersection, and Difference of Bags

These three operations have new definitions for bags. Suppose that R and S
are bags, and that tuple ¢ appears n times in R and m times in S. Note that
either n or m (or both) can be 0. Then:

¢ In the bag union R U S, tuple ¢ appears n + m times.
o In the bag intersection R N S, tuple ¢ appears min(n, m) times.

¢ In the bag difference R — S, tuple ¢ appears max(0,n — m) times. That
is, if tuple ¢ appears in R more times than it appears in S, then ¢ appears
in R — S the number of times it appears in R, minus the number of times
it appears in S. However, if ¢t appears at least as many times in S as
it appears in R, then ¢t does not appear at all in R — S. Intuitively,
occurrences of ¢ in S each “cancel” one occurrence in R.

Example 5.4: Let R be the relation of Fig. 5.1, that is, a bag in which tuple
(1,2) appears three times and (3,4) appears once. Let S be the bag

A | B

112
3 |4
3 |4
5 |6

Then the bag union R U S is the bag in which (1,2) appears four times (three
times for its occurrences in R and once for its occurrence in S); (3,4) appears
three times, and (5,6) appears once.

The bag intersection R N S is the bag



208 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

AlB

1
3

Ol oy

T|

with one occurrence each of (1,2) and (3,4). That is, (1, 2) appears three times
in R and oncein S, and min(3, 1) = 1, so (1,2) appears once in R N S. Similarly,
(3,4) appears min(1,2) = 1 time in R N S. Tuple (5,6), which appears once in
S but zero times in R appears min(0,1) = 0 times in R N S. In this case, the
result happens to be a set, but any set is also a bag,.

The bag difference R — S is the bag

S
o Ny

To see why, notice that (1,2) appears three times in R and once in S, so in
R — S it appears max(0,3 — 1) = 2 times. Tuple (3,4) appears once in R and
twice in S, so in R — S it appears max(0,1 — 2) = 0 times. No other tuple
appears in R, so there can be no other tuples in R — S.

As another example, the bag difference S — R is the bag

A|B
3 |4
5|6
Tuple (3,4) appears once because that is the number of times it appears in S

minus the number of times it appears in R. Tuple (5, 6) appears once in S — R
for the same reason. O

5.1.3 Projection of Bags

We have already illustrated the projection of bags. As we saw in Example 5.2,
each tuple is processed independently during the projection. If R is the bag of
Fig. 5.2 and we compute the bag-projection 74 g(R), then we get the bag of
Fig. 5.1.

If the elimination of one or more attributes during the projection causes
the same tuple to be created from several tuples, these duplicate tuples are not
eliminated from the result of a bag-projection. Thus, the three tuples (1,2, 5),
(1,2,7), and (1,2, 8) of the relation R from Fig. 5.2 each gave rise to the same
tuple (1, 2) after projection onto attributes A and B. In the bag result, there are
three occurrences of tuple (1, 2), while in the set-projection, this tuple appears
only once.



5.1. RELATIONAL OPERATIONS ON BAGS 209

Bag Operations on Sets

Imagine we have two sets R and S. Every set may be thought of as a
bag; the bag just happens to have at most one occurrence of any tuple.
Suppose we intersect R N .S, but we think of R and S as bags and use the
bag intersection rule. Then we get the same result as we would get if we
thought of R and S as sets. That is, thinking of R and S as bags, a tuple
tisin R N S the minimum of the number of times it is in R and S. Since
R and S are sets, t can be in each only 0 or 1 times. Whether we use the
bag or set intersection rules, we find that ¢ can appear at most once in
RN S, and it appears once exactly when it is in both R and S. Similarly,
if we use the bag difference rule to compute R — .S or S — R we get exactly
the same result as if we used the set rule.

However, union behaves differently, depending on whether we think
of R and S as sets or bags. If we use the bag rule to compute R U S,
then the result may not be a set, even if R and S are sets. In particular,
if tuple ¢t appears in both R and S, then ¢ appears twice in R U S if we
use the bag rule for union. But if we use the set rule then ¢ appears only
oncein RU S. -

5.1.4 Selection on Bags

To apply a selection to a bag, we apply the selection condition to each tuple
independently. As always with bags, we do not eliminate duplicate tuples in
the result.

Example 5.5: If R is the bag

ﬁ

=W
ON R N[y
N~ o oo

then the result of the bag-selection oo>6(R) is

Al B|C

3|46
1,27
1127

That is, all but the first tuple meets the selection condition. The last two tuples,
which are duplicates in R, are each included in the result. I



210 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

Algebraic Laws for Bags

An algebraic law is an equivalence between two expressions of relational
algebra whose arguments are variables standing for relations. The equiv-
alence asserts that no matter what relations we substitute for these vari-
ables, the two expressions define the same relation. An example of a well-
known law is the commutative law for union: R U S = S U R. This law
happens to hold whether we regard relation-variables R and S as standing
for sets or bags. However, there are a number of other laws that hold when
relational algebra is applied to sets but that do not hold when relations are
interpreted as bags. A simple example of such a law is the distributive law
of set difference over union, (RU S) - T = (R—-T) U (S — T). This law
holds for sets but not for bags. To see why it fails for bags, suppose R, S,
and T each have one copy of tuple . Then the expression on the left has
one t, while the expression on the right has none. As sets, neither would
have t. Some exploration of algebraic laws for bags appears in Exercises
5.1.4 and 5.1.5.

5.1.5 Product of Bags

The rule for the Cartesian product of bags is the expected one. Each tuple of
one relation is paired with each tuple of the other, regardless of whether it is a
duplicate or not. As a result, if a tuple r appears in a relation R m times, and
tuple s appears n times in relation S, then in the product R x S, the tuple rs
will appear mn times.

Example 5.6: Let R and S be the bags shown in Fig. 5.3. Then the product
R x S consists of six tuples, as shown in Fig. 5.3(c). Note that the usual
convention regarding attribute names that we developed for set-relations applies
equally well to bags. Thus, the attribute B, which belongs to both relations R
and S, appears twice in the product, each time prefixed by one of the relation
names. [

5.1.6 Joins of Bags

Joining bags presents no surprises. We compare each tuple of one relation with
each tuple of the other, decide whether or not this pair of tuples joins success-
fully, and if so we put the resulting tuple in the answer. When constructing the
answer, we do not eliminate duplicate tuples.

Example 5.7: The natural join R < S of the relations R and S seen in Fig. 5.3
is



5.1. RELATIONAL OPERATIONS ON BAGS 211

A

£

=

1
1
(a) The relation R

B

;

U'IU'IOJQ

2
4
4
(b) The relation S

| RB| S.B |

el I e
N NNNDNDN
P I SO
U'IU'IU'IU‘IOJQJQ

(c) The product R x S

Figure 5.3: Computing the product of bags

A| B

112

12
That is, tuple (1,2) of R joins with (2,3) of S. Since there are two copies of
(1,2) in R and one copy of (2, 3) in S, there are two pairs of tuples that join to

give the tuple (1,2,3). No other tuples from R and S join successfully.
As another example on the same relations R and S, the theta-join

OJOJQ

RrappesB S

produces the bag

A|RB|SB|C
1 2 4 5
1 2 4 5
1 2 4 5
1 2 4 5



212 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

The computation of the join is as follows. Tuple (1,2) from R and (4,5) from S
meet the join condition. Since each appears twice in its relation, the number of
times the joined tuple appears in the result is 2 x 2 or 4. The other possible join
of tuples — (1, 2) from R with (2, 3) from S — fails to meet the join condition,
so this combination does not appear in the result. O

5.1.7 Exercises for Section 5.1

Exercise 5.1.1: Let PC be the relation of Fig. 2.21(a), and suppose we compute
the projection mspeeq(PC). What is the value of this expression as a set? As a
bag? What is the average value of tuples in this projection, when treated as a
set? As a bag?

Exercise 5.1.2: Repeat Exercise 5.1.1 for the projection m44(PC).

Exercise 5.1.3: This exercise refers to the “battleship” relations of Exer-
c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>