
http://www.tutorialspoint.com/nodejs/nodejs_quick_guide.htm Copyright © tutorialspoint.com

NODE.JS - QUICK GUIDENODE.JS - QUICK GUIDE

NODE.JS - INTRODUCTIONNODE.JS - INTRODUCTION
What is Node.js?
Node.js is a web application framework built on Google Chrome's JavaScript EngineV8Engine. Its
latest version is v0.10.36. Defintion of Node.js as put by its official documentation is as follows:

Node.js® is a platform built on Chrome's JavaScript runtime for easily building fast,
scalable network applications. Node.js uses an event-driven, non-blocking I/O model
that makes it lightweight and efficient, perfect for data-intensive real-time
applications that run across distributed devices.

Node.js comes with runtime environment on which a Javascript based script can be interpreted and
executed ItisanalogustoJVMtoJAVAbytecode. This runtime allows to execute a JavaScript code on any
machine outside a browser. Because of this runtime of Node.js, JavaScript is now can be executed
on server as well.

Node.js also provides a rich library of various javascript modules which eases the developement of
web application using Node.js to great extents.

Node.js = Runtime Environment + JavaScript Library

Features of Node.js
Aynchronous and Event DrivenAll APIs of Node.js library are aynchronous that is non-
blocking. It essentially means a Node.js based server never waits for a API to return data.
Server moves to next API after calling it and a notification mechanism of Events of Node.js
helps server to get response from the previous API call.

Very Fast Being built on Google Chrome's V8 JavaScript Engine, Node.js library is very fast
in code execution.

Single Threaded but highly Scalable - Node.js uses a single threaded model with event
looping. Event mechanism helps server to respond in a non-bloking ways and makes server
highly scalable as opposed to traditional servers which create limited threads to handle
requests. Node.js uses a single threaded program and same program can services much
larger number of requests than traditional server like Apache HTTP Server.

No Buffering - Node.js applications never buffer any data. These applications simply output
the data in chunks.

License - Node.js is released under the MIT license.

Who Uses Node.js?
Following is the link on github wiki containing an exhaustive list of projects, application and
companies which are using Node.js. This list include eBay, General Electric, GoDaddy, Microsoft,
PayPal, Uber, Wikipins, Yahoo!, Yammer and the list continues.

Projects, Applications, and Companies Using Node

Concepts
The following diagram depicts some important parts of Node.js which we will discuss in detail in the
subsequent chapters.

http://www.tutorialspoint.com/nodejs/nodejs_quick_guide.htm
http://nodejs.org/
http://code.google.com/p/v8/
https://raw.githubusercontent.com/joyent/node/v0.12.0/LICENSE
https://github.com/joyent/node/wiki/projects,-applications,-and-companies-using-node

Where to Use Node.js?
Following are the areas where Node.js is proving itself a perfect technology partner.

I/O bound Applications

Data Streaming Applications

Data Intensive Realtime Applications DIRT

JSON APIs based Applications

Single Page Applications

Where Not to Use Node.js?
It is not advisable to use Node.js for CPU intensive applications.

NODE.JS - ENVIRONMENT SETUPNODE.JS - ENVIRONMENT SETUP
Try it Option Online
You really do not need to set up your own environment to start learning Node.js. Reason is very
simple, we already have set up Node.js environment online, so that you can compile and execute
all the available examples online at the same time when you are doing your theory work. This
gives you confidence in what you are reading and to check the result with different options. Feel
free to modify any example and execute it online.

Try following example using Try it option available at the top right corner of the below sample
code box:

console.log("Hello World!");

For most of the examples given in this tutorial, you will find Try it option, so just make use of it and
enjoy your learning.

Local Environment Setup
If you are still willing to set up your environment for Node.js, you need the following two softwares
available on your computer, a Text Editor and b The Node.js binary installables.

Text Editor
This will be used to type your program. Examples of few editors include Windows Notepad, OS Edit
command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. For example, Notepad
will be used on Windows, and vim or vi can be used on windows as well as Linux or UNIX.

The files you create with your editor are called source files and contain program source code. The
source files for Node.js programs are typically named with the extension ".js".

Before starting your programming, make sure you have one text editor in place and you have
enough experience to write a computer program, save it in a file, compile it and finally execute it.

The Node.js Runtime

The source code written in source file is simply javascript. The Node.js interprter will be used to
interpret and execute your javascript code.

Node.js distribution comes as a binary installable for SunOS , Linux, Mac OS X, and Windows
operating systems with the 32-bit 386 and 64-bit amd64 x86 processor architectures.

Following section guides you on how to install Node.js binary distribution on various OS.

Download Node.js archive
Download latest version of Node.js installable archive file from Node.js Downloads. At the time of
writing this tutorial, I downloaded node-v0.12.0-x64.msi and copied it into C:\>nodejs folder.

OS Archive name

Windows node-v0.12.0-x64.msi

Linux node-v0.12.0-linux-x86.tar.gz

Mac node-v0.12.0-darwin-x86.tar.gz

SunOS node-v0.12.0-sunos-x86.tar.gz

Installation on UNIX/Linux/Mac OS X, and SunOS
Extract the download archive into /usr/local, creating a NodeJs tree in /usr/local/nodejs. For
example:

tar -C /usr/local -xzf node-v0.12.0-linux-x86.tar.gz

Add /usr/local/nodejs to the PATH environment variable.

OS Output

Linux export PATH=$PATH:/usr/local/nodejs

Mac export PATH=$PATH:/usr/local/nodejs

FreeBSD export PATH=$PATH:/usr/local/nodejs

Installation on Windows
Use the MSI file and follow the prompts to install the Node.js. By default, the installer uses the
Node.js distribution in C:\Program Files\nodejs. The installer should set the C:\Program Files\nodejs
directory in window's PATH environment variable. Restart any open command prompts for the
change to take effect.

Verify installation: Executing a File
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

console.log("Hello World")

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output

Hello, World!

NODE.JS - FIRST APPLICATIONNODE.JS - FIRST APPLICATION

http://nodejs.org/download/

Before creating actual Hello World ! application using Node.js, let us see the parts of a Node.js
application. A Node.js application consists of following three important parts:

import required module: use require directive to load a javascript module

create server: A server which will listen to client's request similar to Apache HTTP Server.

read request and return response: server created in earlier step will read HTTP request
made by client which can be a browser or console and return the response.

Creating Node.js Application
Step 1: import required module

use require directive to load http module.

var http = require("http")

Step 2: create an HTTP server using http.createServer method. Pass it a function with parameters
request and response. Write the sample implementation to always return "Hello World". Pass a
port 8081 to listen method.

http.createServer(function (request, response) {
 // HTTP Status: 200 : OK
 // Content Type: text/plain
 response.writeHead(200, {'Content-Type': 'text/plain'});
 // send the response body as "Hello World"
 response.end('Hello World\n');
}).listen(8081);
// console will print the message
console.log('Server running at http://127.0.0.1:8081/');

Step 3: Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var http = require("http")
http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8081);
console.log('Server running at http://127.0.0.1:8081/');

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output. Server has started

Server running at http://127.0.0.1:8081/

Make a request to Node.js server
Open http://127.0.0.1:8081/ in any browser and see the below result.

NODE.JS - REPLNODE.JS - REPL
REPL stands for Read Eval Print Loop and it represents a computer environment like a window
console or unix/linux shell where a command is entered and system responds with an output.
Node.js or Node comes bundled with a REPL environment. It performs the following desired tasks.

Read - Reads user's input, parse the input into JavaScript data-structure and stores in
memory.

Eval - Takes and evaluates the data structure

Print - Prints the result

Loop - Loops the above command until user press ctrl-c twice.

REPL feature of Node is very useful in experimenting with Node.js codes and to debug JavaScript
codes.

Features
REPL can be started by simply running node on shell/console without any argument.

C:\Nodejs_WorkSpace> node

You will see the REPL Command prompt:

C:\Nodejs_WorkSpace> node
>

Simple Expression
Let's try simple mathematics at REPL command prompt:

C:\Nodejs_WorkSpace>node
> 1 + 3
4
> 1 + (2 * 3) - 4
3
>

Use variables
Use variables to store values and print later. if var keyword is not used then value is stored in the
variable and printed. Wheras if var keyword is used then value is stored but not printed. You can
use both variables later. Print anything usind console.log

C:\Nodejs_WorkSpace> node
> x = 10
10
> var y = 10
undefined
> x + y
20
> console.log("Hello World")
Hello Workd
undefined

Multiline Expression
Node REPL supports multiline expression similar to JavaScript. See the following do-while loop in

action:

C:\Nodejs_WorkSpace> node
> var x = 0
undefined
> do {
... x++;
... console.log("x: " + x);
... } while (x < 5);
x: 1
x: 2
x: 3
x: 4
x: 5
undefined
>

... comes automatically when you press enters after opening bracket. Node automatically checks
the continuity of expressions.

Underscore variable
Use _ to get the last result.

C:\Nodejs_WorkSpace>node
> var x = 10
undefined
> var y = 20
undefined
> x + y
30
> var sum = _
undefined
> console.log(sum)
30
undefined
>

REPL Commands
ctrl + c - terminate the current command.

ctrl + c twice - terminate the Node REPL.

ctrl + d - terminate the Node REPL.

Up/Down Keys - see command history and modify previous commands.

tab Keys - list of current commands.

.help - list of all commands.

.break - exit from multiline expression.

.clear - exit from multiline expression

.save - save current Node REPL session to a file.

.load - load file content in current Node REPL session.

C:\Nodejs_WorkSpace>node
> var x = 10
undefined
> var y = 20
undefined
> x + y
30
> var sum = _
undefined
> console.log(sum)
30
undefined

> .save test.js
Session saved to:test.js
> .load test.js
> var x = 10
undefined
> var y = 20
undefined
> x + y
30
> var sum = _
undefined
> console.log(sum)
30
undefined
>

NODE.JS - NPMNODE.JS - NPM
npm stands for Node Package Manager. npm provides following two main functionalities:

Online repositories for node.js packages/modules which are searchable on search.nodejs.org

Command line utility to install packages, do version management and dependency
management of Node.js packages.

npm comes bundled with Node.js installables after v0.6.3 version. To verify the same, open
console and type following command and see the result:

C:\Nodejs_WorkSpace>npm --version
2.5.1

Global vs Local installation
By default, npm installs any dependency in the local mode. Here local mode refers to the package
installation in node_modules directory lying in the folder where Node application is present.
Locally deployed packages are accessible via require.

Globally installed packages/dependencies are stored in <user-directory>/npm directory. Such
dependencies can be used in CLI CommandLineInterface function of any node.js but can not be
imported using require in Node application directly.

Let's install express, a popular web framework using local installation.

C:\Nodejs_WorkSpace>npm install express
express@4.11.2 node_modules\express
|-- merge-descriptors@0.0.2
|-- utils-merge@1.0.0
|-- methods@1.1.1
|-- escape-html@1.0.1
|-- fresh@0.2.4
|-- cookie@0.1.2
|-- range-parser@1.0.2
|-- media-typer@0.3.0
|-- cookie-signature@1.0.5
|-- vary@1.0.0
|-- finalhandler@0.3.3
|-- parseurl@1.3.0
|-- serve-static@1.8.1
|-- content-disposition@0.5.0
|-- path-to-regexp@0.1.3
|-- depd@1.0.0
|-- qs@2.3.3
|-- debug@2.1.1 (ms@0.6.2)
|-- send@0.11.1 (destroy@1.0.3, ms@0.7.0, mime@1.2.11)
|-- on-finished@2.2.0 (ee-first@1.1.0)
|-- type-is@1.5.7 (mime-types@2.0.9)
|-- accepts@1.2.3 (negotiator@0.5.0, mime-types@2.0.9)
|-- etag@1.5.1 (crc@3.2.1)
|-- proxy-addr@1.0.6 (forwarded@0.1.0, ipaddr.js@0.1.8)

Once npm completes the download, you can verify by looking at the content of
C:\Nodejs_WorkSpace\node_modules. Or type the following command:

http://search.nodejs.org

C:\Nodejs_WorkSpace>npm ls
C:\Nodejs_WorkSpace
|-- express@4.11.2
 |-- accepts@1.2.3
 | |-- mime-types@2.0.9
 | | |-- mime-db@1.7.0
 | |-- negotiator@0.5.0
 |-- content-disposition@0.5.0
 |-- cookie@0.1.2
 |-- cookie-signature@1.0.5
 |-- debug@2.1.1
 | |-- ms@0.6.2
 |-- depd@1.0.0
 |-- escape-html@1.0.1
 |-- etag@1.5.1
 | |-- crc@3.2.1
 |-- finalhandler@0.3.3
 |-- fresh@0.2.4
 |-- media-typer@0.3.0
 |-- merge-descriptors@0.0.2
 |-- methods@1.1.1
 |-- on-finished@2.2.0
 | |-- ee-first@1.1.0
 |-- parseurl@1.3.0
 |-- path-to-regexp@0.1.3
 |-- proxy-addr@1.0.6
 | |-- forwarded@0.1.0
 | |-- ipaddr.js@0.1.8
 |-- qs@2.3.3
 |-- range-parser@1.0.2
 |-- send@0.11.1
 | |-- destroy@1.0.3
 | |-- mime@1.2.11
 | |-- ms@0.7.0
 |-- serve-static@1.8.1
 |-- type-is@1.5.7
 | |-- mime-types@2.0.9
 | |-- mime-db@1.7.0
 |-- utils-merge@1.0.0
 |-- vary@1.0.0

Now Let's try installing express, a popular web framework using global installation.

C:\Nodejs_WorkSpace>npm install express - g

Once npm completes the download, you can verify by looking at the content of <user-
directory>/npm/node_modules. Or type the following command:

C:\Nodejs_WorkSpace>npm ls -g

Installing a module
Installation of any module is as simple as typing the following command.

C:\Nodejs_WorkSpace>npm install express

Now you can use it in your js file as following:

var express = require('express');

Using package.json
package.json is present in the root directoryt of any Node application/module and is used to define
the properties of a package. Let's open package.json of express package present in
C:\Nodejs_Workspace\node_modules\express\

{
 "name": "express",
 "description": "Fast, unopinionated, minimalist web framework",
 "version": "4.11.2",

 "author": {
 "name": "TJ Holowaychuk",
 "email": "tj@vision-media.ca"
 },
 "contributors": [
 {
 "name": "Aaron Heckmann",
 "email": "aaron.heckmann+github@gmail.com"
 },
 {
 "name": "Ciaran Jessup",
 "email": "ciaranj@gmail.com"
 },
 {
 "name": "Douglas Christopher Wilson",
 "email": "doug@somethingdoug.com"
 },
 {
 "name": "Guillermo Rauch",
 "email": "rauchg@gmail.com"
 },
 {
 "name": "Jonathan Ong",
 "email": "me@jongleberry.com"
 },
 {
 "name": "Roman Shtylman",
 "email": "shtylman+expressjs@gmail.com"
 },
 {
 "name": "Young Jae Sim",
 "email": "hanul@hanul.me"
 }
],
 "license": "MIT",
 "repository": {
 "type": "git",
 "url": "https://github.com/strongloop/express"
 },
 "homepage": "http://expressjs.com/",
 "keywords": [
 "express",
 "framework",
 "sinatra",
 "web",
 "rest",
 "restful",
 "router",
 "app",
 "api"
],
 "dependencies": {
 "accepts": "~1.2.3",
 "content-disposition": "0.5.0",
 "cookie-signature": "1.0.5",
 "debug": "~2.1.1",
 "depd": "~1.0.0",
 "escape-html": "1.0.1",
 "etag": "~1.5.1",
 "finalhandler": "0.3.3",
 "fresh": "0.2.4",
 "media-typer": "0.3.0",
 "methods": "~1.1.1",
 "on-finished": "~2.2.0",
 "parseurl": "~1.3.0",
 "path-to-regexp": "0.1.3",
 "proxy-addr": "~1.0.6",
 "qs": "2.3.3",
 "range-parser": "~1.0.2",
 "send": "0.11.1",
 "serve-static": "~1.8.1",
 "type-is": "~1.5.6",
 "vary": "~1.0.0",
 "cookie": "0.1.2",
 "merge-descriptors": "0.0.2",

 "utils-merge": "1.0.0"
 },
 "devDependencies": {
 "after": "0.8.1",
 "ejs": "2.1.4",
 "istanbul": "0.3.5",
 "marked": "0.3.3",
 "mocha": "~2.1.0",
 "should": "~4.6.2",
 "supertest": "~0.15.0",
 "hjs": "~0.0.6",
 "body-parser": "~1.11.0",
 "connect-redis": "~2.2.0",
 "cookie-parser": "~1.3.3",
 "express-session": "~1.10.2",
 "jade": "~1.9.1",
 "method-override": "~2.3.1",
 "morgan": "~1.5.1",
 "multiparty": "~4.1.1",
 "vhost": "~3.0.0"
 },
 "engines": {
 "node": ">= 0.10.0"
 },
 "files": [
 "LICENSE",
 "History.md",
 "Readme.md",
 "index.js",
 "lib/"
],
 "scripts": {
 "test": "mocha --require test/support/env --reporter spec --bail --check-leaks test/
test/acceptance/",
 "test-cov": "istanbul cover node_modules/mocha/bin/_mocha -- --require
test/support/env --reporter dot --check-leaks test/ test/acceptance/",
 "test-tap": "mocha --require test/support/env --reporter tap --check-leaks test/
test/acceptance/",
 "test-travis": "istanbul cover node_modules/mocha/bin/_mocha --report lcovonly -- --
require test/support/env --reporter spec --check-leaks test/ test/acceptance/"
 },
 "gitHead": "63ab25579bda70b4927a179b580a9c580b6c7ada",
 "bugs": {
 "url": "https://github.com/strongloop/express/issues"
 },
 "_id": "express@4.11.2",
 "_shasum": "8df3d5a9ac848585f00a0777601823faecd3b148",
 "_from": "express@*",
 "_npmVersion": "1.4.28",
 "_npmUser": {
 "name": "dougwilson",
 "email": "doug@somethingdoug.com"
 },
 "maintainers": [
 {
 "name": "tjholowaychuk",
 "email": "tj@vision-media.ca"
 },
 {
 "name": "jongleberry",
 "email": "jonathanrichardong@gmail.com"
 },
 {
 "name": "shtylman",
 "email": "shtylman@gmail.com"
 },
 {
 "name": "dougwilson",
 "email": "doug@somethingdoug.com"
 },
 {
 "name": "aredridel",
 "email": "aredridel@nbtsc.org"
 },
 {

 "name": "strongloop",
 "email": "callback@strongloop.com"
 },
 {
 "name": "rfeng",
 "email": "enjoyjava@gmail.com"
 }
],
 "dist": {
 "shasum": "8df3d5a9ac848585f00a0777601823faecd3b148",
 "tarball": "http://registry.npmjs.org/express/-/express-4.11.2.tgz"
 },
 "directories": {},
 "_resolved": "https://registry.npmjs.org/express/-/express-4.11.2.tgz",
 "readme": "ERROR: No README data found!"
}

Attributes of Package.json
name - name of the package

version - version of the package

description - description of the package

homepage - homepage of the package

author - author of the package

contributors - name of the contributors to the package

dependencies - list of dependencies. npm automatically installs all the dependencies
mentioned here in the node_module folder of the package.

repository - repository type and url of the package

main - entry point of the package

keywords - keywords

Uninstalling a module
Use following command to uninstall a module.

C:\Nodejs_WorkSpace>npm uninstall express

Once npm uninstall the package, you can verify by looking at the content of <user-
directory>/npm/node_modules. Or type the following command:

C:\Nodejs_WorkSpace>npm ls

Updating a module
Update package.json and change the version of the dependency which to be updated and run the
following command.

C:\Nodejs_WorkSpace>npm update

Search a module
Search package name using npm.

C:\Nodejs_WorkSpace>npm search express

Create a module
Creation of module requires package.json to be generated. Let's generate package.json using
npm.

C:\Nodejs_WorkSpace>npm init

This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.

See 'npm help json' for definitive documentation on these fields
and exactly what they do.

Use 'npm install <pkg> --save' afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
name: (Nodejs_WorkSpace)

Once package.json is generated. Use following command to register yourself with npm repository
site using a valid email address.

C:\Nodejs_WorkSpace>npm adduser

Now its time to publish your module:

C:\Nodejs_WorkSpace>npm publish

NODE.JS - CALLBACKS CONCEPTNODE.JS - CALLBACKS CONCEPT
What is Callback?
Callback is an asynchronous equivalent for a function. A callback function is called at the
completion of a given task. Node makes heavy use of callbacks. All APIs of Node are written is such
a way that they supports callbacks. For example, a function to read a file may start reading file and
return the control to execution environment immidiately so that next instruction can be executed.
Once file I/O is complete, it will call the callback function while passing the callback function, the
content of the file as parameter. So there is no blocking or wait for File I/O. This makes Node.js
highly scalable, as it can process high number of request without waiting for any function to return
result.

Blocking Code Example
Create a txt file named test.txt in C:\>Nodejs_WorkSpace

TutorialsPoint.Com

Create a js file named test.js in C:\>Nodejs_WorkSpace

var fs = require("fs");
var data = fs.readFileSync('test.txt');
console.log(data.toString());
console.log("Program Ended");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output

TutorialsPoint.Com
Program Ended

Non-Blocking Code Example
Create a txt file named test.txt in C:\>Nodejs_WorkSpace

TutorialsPoint.Com

Update test.js in C:\>Nodejs_WorkSpace

var fs = require("fs");

fs.readFile('test.txt', function (err, data) {
 if (err) return console.error(err);

 console.log(data.toString());
});
console.log("Program Ended");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output

Program Ended
TutorialsPoint.Com

Event Loop Overview
Node js is a single threaded application but it support concurrency via concept of event and
callbacks. As every API of Node js are asynchronous and being a single thread, it uses async
function calls to maintain the concurrency. Node uses observer pattern. Node thread keeps an
event loop and whenever any task get completed, it fires the corresponding event which signals
the event listener function to get executed.

Event Driven Programming
Node.js uses Events heavily and it is also one of the reason why Node.js is pretty fast compared to
other similar technologies. As soon as Node starts its server, it simply initiates its variables,
delcares functions and then simply waits for event to occur.

While Events seems similar to what callbacks are. The difference lies in the fact that callback
functions are called when an asynchronous function returns its result where event handling works
on the observer pattern. The functions which listens to events acts as observer. Whenever an
event got fired, its listener function starts executing. Node.js has multiple in-built event. The
primary actor is EventEmitter which can be imported using following syntax

//import events module
var events = require('events');
//create an eventEmitter object
var eventEmitter = new events.EventEmitter();

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

//import events module
var events = require('events');
//create an eventEmitter object
var eventEmitter = new events.EventEmitter();

//create a function connected which is to be executed
//when 'connection' event occurs
var connected = function connected() {
 console.log('connection succesful.');

 // fire the data_received event
 eventEmitter.emit('data_received.');
}

// bind the connection event with the connected function
eventEmitter.on('connection', connected);

// bind the data_received event with the anonymous function
eventEmitter.on('data_received', function(){
 console.log('data received succesfully.');
});

// fire the connection event
eventEmitter.emit('connection');

console.log("Program Ended.");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output. Server has started

connection succesful.
data received succesfully.
Program Ended.

How Node Applications Work?
In Node Application, any async function accepts a callback as a last parameter and the callback
function accepts error as a first parameter. Let's revisit the previous example again.

var fs = require("fs");

fs.readFile('test.txt', function (err, data) {
 if (err){
 console.log(err.stack);
 return;
 }
 console.log(data.toString());
});
console.log("Program Ended");

Here fs.readFile is a async function whose purpose is to read a file. If an error occur during read of
file, then err object will contain the corresponding error else data will contain the contents of the
file. readFile passes err and data to callback function after file read operation is complete.

NODE.JS - EVENT EMITTERNODE.JS - EVENT EMITTER
EventEmitter class lies in events module. It is accessibly via following syntax:

//import events module
var events = require('events');
//create an eventEmitter object
var eventEmitter = new events.EventEmitter();

When an EventEmitter instance faces any error, it emits an 'error' event. When new listener is
added, 'newListener' event is fired and when a listener is removed, 'removeListener' event is fired.

EventEmitter provides multiple properties like on and emit. on property is used to bind a function
with the event and emit is used to fire an event.

Methods

Sr.
No.

method Description

1 addListener
event, listener

Adds a listener to the end of the listeners array for the specified
event. No checks are made to see if the listener has already been
added. Multiple calls passing the same combination of event and
listener will result in the listener being added multiple times.
Returns emitter, so calls can be chained.

2 onevent, listener Adds a listener to the end of the listeners array for the specified
event. No checks are made to see if the listener has already been
added. Multiple calls passing the same combination of event and
listener will result in the listener being added multiple times.
Returns emitter, so calls can be chained.

3 onceevent, listener Adds a one time listener for the event. This listener is invoked
only the next time the event is fired, after which it is removed.
Returns emitter, so calls can be chained.

4 removeListener Remove a listener from the listener array for the specified event.

event, listener Caution: changes array indices in the listener array behind the
listener. removeListener will remove, at most, one instance of a
listener from the listener array. If any single listener has been
added multiple times to the listener array for the specified event,
then removeListener must be called multiple times to remove
each instance. Returns emitter, so calls can be chained.

5 removeAllListeners
[event]

Removes all listeners, or those of the specified event. It's not a
good idea to remove listeners that were added elsewhere in the
code, especially when it's on an emitter that you didn't create
e. g. socketsorfilestreams. Returns emitter, so calls can be chained.

6 setMaxListenersn By default EventEmitters will print a warning if more than 10
listeners are added for a particular event. This is a useful default
which helps finding memory leaks. Obviously not all Emitters
should be limited to 10. This function allows that to be increased.
Set to zero for unlimited.

7 listenersevent Returns an array of listeners for the specified event.

8 emit
event, [arg1], [arg2], [. . .]

Execute each of the listeners in order with the supplied
arguments. Returns true if event had listeners, false otherwise.

Class Methods

Sr. No. method Description

1 listenerCountemitter, event Return the number of listeners for a given event.

Events

Sr.
No.

event name Parameters Description

1 newListener
event -
String
The
event
name

listener
-
Function
The
event
handler
function

This event is emitted any time a listener is added.
When this event is triggered, the listener may not yet
have been added to the array of listeners for the
event.

2 removeListener
event -
String
The
event
name

listener
-
Function
The
event
handler
function

This event is emitted any time someone removes a
listener. When this event is triggered, the listener
may not yet have been removed from the array of
listeners for the event.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var events = require('events');
var eventEmitter = new events.EventEmitter();

//listener #1
var listner1 = function listner1() {
 console.log('listner1 executed.');
}

//listener #2
var listner2 = function listner2() {
 console.log('listner2 executed.');
}

// bind the connection event with the listner1 function
eventEmitter.addListener('connection', listner1);

// bind the connection event with the listner2 function
eventEmitter.on('connection', listner2);

var eventListeners =
require('events').EventEmitter.listenerCount(eventEmitter,'connection');
console.log(eventListeners + " Listner(s) listening to connection event");

// fire the connection event
eventEmitter.emit('connection');

// remove the binding of listner1 function
eventEmitter.removeListener('connection', listner1);
console.log("Listner1 will not listen now.");

// fire the connection event
eventEmitter.emit('connection');

eventListeners = require('events').EventEmitter.listenerCount(eventEmitter,'connection');
console.log(eventListeners + " Listner(s) listening to connection event");

console.log("Program Ended.");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output. Server has started

2 Listner(s) listening to connection event
listner1 executed.
listner2 executed.
Listner1 will not listen now.
listner2 executed.
1 Listner(s) listening to connection event
Program Ended.

NODE.JS - BUFFER MODULENODE.JS - BUFFER MODULE
buffer module can be used to create Buffer and SlowBuffer classes. Buffer module can be
imported using following syntax.

var buffer = require("buffer")

Buffer class
Buffer class is a global class and can be accessed in application without importing buffer module.
A Buffer is a kind of an array of integers and corresponds to a raw memory allocation outside the
V8 heap. A Buffer cannot be resized.

Methods

Sr.
No.

method Parameters Description

1 new Buffersize
size Number

Allocates a new buffer
of size octets. Note,
size must be no more
than kMaxLength.
Otherwise, a
RangeError will be
thrown here.

2 new Bufferbuffer
buffer Buffer

Copies the passed
buffer data onto a
new Buffer instance.

3 new Bufferstr[, encoding]
str String -
string to
encode.

encoding
String -
encoding to
use,
Optional.

Allocates a new buffer
containing the given
str. encoding defaults
to 'utf8'.

4 buf.length Return: Number The size of the buffer
in bytes. Note that this
is not necessarily the
size of the contents.
length refers to the
amount of memory
allocated for the
buffer object. It does
not change when the
contents of the buffer
are changed.

5 buf.writestring[, offset][, length][, encoding]
string String
- data to be
written to
buffer

offset
Number,
Optional,
Default: 0

length
Number,
Optional,
Default:
buffer.length
- offset

encoding
String,
Optional,
Default:
'utf8'

Allocates a new buffer
containing the given
str. encoding defaults
to 'utf8'.

6 buf.writeUIntLE
value, offset, byteLength[, noAssert] value

{Number}
Bytes to be

Writes value to the
buffer at the specified
offset and byteLength.

Bytes to be
written to
buffer

offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

noAssert
{Boolean}
Default:
false

Return:
{Number}

Supports up to 48 bits
of accuracy. Set
noAssert to true to
skip validation of
value and offset.
Defaults to false.

7 buf.writeUIntBE
value, offset, byteLength[, noAssert] value

{Number}
Bytes to be
written to
buffer

offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

noAssert
{Boolean}
Default:
false

Return:
{Number}

Writes value to the
buffer at the specified
offset and byteLength.
Supports up to 48 bits
of accuracy. Set
noAssert to true to
skip validation of
value and offset.
Defaults to false.

8 buf.writeIntLE
value, offset, byteLength[, noAssert] value

{Number}
Bytes to be
written to
buffer

offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

Writes value to the
buffer at the specified
offset and byteLength.
Supports up to 48 bits
of accuracy. Set
noAssert to true to
skip validation of
value and offset.
Defaults to false.

noAssert
{Boolean}
Default:
false

Return:
{Number}

9 buf.writeIntBE
value, offset, byteLength[, noAssert] value

{Number}
Bytes to be
written to
buffer

offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

noAssert
{Boolean}
Default:
false

Return:
{Number}

Writes value to the
buffer at the specified
offset and byteLength.
Supports up to 48 bits
of accuracy. Set
noAssert to true to
skip validation of
value and offset.
Defaults to false.

10 buf.readUIntLEoffset, byteLength[, noAssert]
offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

noAssert
{Boolean}
Default:
false

Return:
{Number}

A generalized version
of all numeric read
methods. Supports up
to 48 bits of
accuracy.Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

11 buf.readUIntBEoffset, byteLength[, noAssert]
offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

A generalized version
of all numeric read
methods. Supports up
to 48 bits of
accuracy.Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

noAssert
{Boolean}
Default:
false

Return:
{Number}

12 buf.readIntLEoffset, byteLength[, noAssert]
offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

noAssert
{Boolean}
Default:
false

Return:
{Number}

A generalized version
of all numeric read
methods. Supports up
to 48 bits of
accuracy.Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

13 buf.readIntBEoffset, byteLength[, noAssert]
offset
{Number} 0
<= offset
<=
buf.length

byteLength
{Number} 0
<
byteLength
<= 6

noAssert
{Boolean}
Default:
false

Return:
{Number}

A generalized version
of all numeric read
methods. Supports up
to 48 bits of
accuracy.Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

14 buf.toString[encoding][, start][, end]
encoding
String,
Optional,
Default:
'utf8'

start
Number,
Optional,
Default: 0

end Number,
Optional,
Default:
buffer.length

Decodes and returns
a string from buffer
data encoded using
the specified
character set
encoding.

15 buf.toJSON Returns a JSON-

representation of the
Buffer instance.
JSON.stringify
implicitly calls this
function when
stringifying a Buffer
instance.

16 buf[index] Get and set the octet
at index. The values
refer to individual
bytes, so the legal
range is between
0x00 and 0xFF hex or
0 and 255.

17 buf.equalsotherBuffer
otherBuffer
Buffer

Returns a boolean of
whether this and
otherBuffer have the
same bytes.

18 buf.compareotherBuffer
otherBuffer
Buffer

Returns a number
indicating whether
this comes before or
after or is the same as
the otherBuffer in sort
order.

19 buf.copy
targetBuffer[, targetStart][, sourceStart][, sourceEnd] targetBuffer

Buffer object
- Buffer to
copy into

targetStart
Number,
Optional,
Default: 0

sourceStart
Number,
Optional,
Default: 0

sourceEnd
Number,
Optional,
Default:
buffer.length

Copies data from a
region of this buffer to
a region in the target
buffer even if the
target memory region
overlaps with the
source. If undefined
the targetStart and
sourceStart
parameters default to
0 while sourceEnd
defaults to
buffer.length.

20 buf.slice[start][, end]
start
Number,
Optional,
Default: 0

end Number,
Optional,
Default:
buffer.length

Returns a new buffer
which references the
same memory as the
old, but offset and
cropped by the start
defaultsto0 and end
defaultstobuffer. length
indexes. Negative
indexes start from the
end of the buffer.

21 buf.readUInt8offset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Reads an unsigned 8
bit integer from the
buffer at the specified
offset. Set noAssert to
true to skip validation
of offset. This means
that offset may be
beyond the end of the

false

Return:
Number

buffer. Defaults to
false.

22 buf.readUInt16LEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads an unsigned 16
bit integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

23 buf.readUInt16BEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads an unsigned 16
bit integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

24 buf.readUInt32LEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads an unsigned 32
bit integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

25 buf.readUInt32BEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads an unsigned 32
bit integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

26 buf.readInt8offset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:

Reads a signed 8 bit
integer from the
buffer at the specified
offset. Set noAssert to
true to skip validation
of offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

Number

27 buf.readInt16LEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a signed 16 bit
integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

28 buf.readInt16BEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a signed 16 bit
integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

29 buf.readInt32LEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a signed 32 bit
integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

30 buf.readInt32BEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a signed 32 bit
integer from the
buffer at the specified
offset with specified
endian format. Set
noAssert to true to
skip validation of
offset. This means
that offset may be
beyond the end of the
buffer. Defaults to
false.

31 buf.readFloatLEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a 32 bit float
from the buffer at the
specified offset with
specified endian
format. Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

32 buf.readFloatBEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a 32 bit float
from the buffer at the
specified offset with
specified endian
format. Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

33 buf.readDoubleLEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a 64 bit double
from the buffer at the
specified offset with
specified endian
format. Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

34 buf.readDoubleBEoffset[, noAssert]
offset
Number

noAssert
Boolean,
Optional,
Default:
false

Return:
Number

Reads a 64 bit double
from the buffer at the
specified offset with
specified endian
format. Set noAssert
to true to skip
validation of offset.
This means that offset
may be beyond the
end of the buffer.
Defaults to false.

35 buf.writeUInt8value, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset. Note, value
must be a valid
unsigned 8 bit integer.
Set noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

36 buf.writeUInt16LEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
unsigned 16 bit
integer. Set noAssert
to true to skip
validation of value

Optional,
Default:
false

and offset. This means
that value may be too
large for the specific
function and offset
may be beyond the
end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

37 buf.writeUInt16BEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
unsigned 16 bit
integer. Set noAssert
to true to skip
validation of value
and offset. This means
that value may be too
large for the specific
function and offset
may be beyond the
end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

38 buf.writeUInt32LEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
unsigned 32 bit
integer. Set noAssert
to true to skip
validation of value
and offset. This means
that value may be too
large for the specific
function and offset
may be beyond the
end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

39 buf.writeUInt32BEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
unsigned 32 bit
integer. Set noAssert
to true to skip
validation of value
and offset. This means

Default:
false that value may be too

large for the specific
function and offset
may be beyond the
end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

40 buf.writeInt8value, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
signed 8 bit integer.
Set noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

41 buf.writeInt16LEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
signed 16 bit integer.
Set noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

42 buf.writeInt16BEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
signed 16 bit integer.
Set noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond

the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

43 buf.writeInt32LEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
signed 32 bit integer.
Set noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

44 buf.writeInt32BEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
signed 32 bit integer.
Set noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

45 buf.writeFloatLEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
32 bit float. Set
noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should

not be used unless
you are certain of
correctness. Defaults
to false.

46 buf.writeFloatBEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
32 bit float. Set
noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

47 buf.writeDoubleLEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
64 bit double. Set
noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

48 buf.writeDoubleBEvalue, offset[, noAssert]
value
Number

offset
Number

noAssert
Boolean,
Optional,
Default:
false

Writes value to the
buffer at the specified
offset with specified
endian format. Note,
value must be a valid
64 bit double. Set
noAssert to true to
skip validation of
value and offset. This
means that value may
be too large for the
specific function and
offset may be beyond
the end of the buffer
leading to the values
being silently
dropped. This should
not be used unless
you are certain of
correctness. Defaults
to false.

49 buf.fillvalue[, offset][, end]
value
Number

offset
Number,
Optional

end Number,
Optional

Fills the buffer with
the specified value. If
the offset defaultsto0
and end
defaultstobuffer. length are
not given it will fill the
entire buffer.

Class Methods

Sr.
No.

method Parameters Description

1 Buffer.isEncoding
encoding encoding

String The
encoding
string to test

Returns true if the encoding is a valid
encoding argument, or false otherwise.

2 Buffer.isBufferobj
obj Object

Return:
Boolean

Tests if obj is a Buffer.

3 Buffer.byteLength
string[, encoding] string String

encoding
String,
Optional,
Default: 'utf8'

Return:
Number

Gives the actual byte length of a string.
encoding defaults to 'utf8'. This is not the
same as String.prototype.length since that
returns the number of characters in a string.

4 Buffer.concat
list[, totalLength] list Array List

of Buffer
objects to
concat

totalLength
Number Total
length of the
buffers when
concatenated

Returns a buffer which is the result of
concatenating all the buffers in the list
together.

5 Buffer.compare
buf1, buf2 buf1 Buffer

buf2 Buffer

The same as buf1.comparebuf2. Useful for
sorting an Array of Buffers.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

//create a buffer
var buffer = new Buffer(26);
console.log("buffer length: " + buffer.length);

//write to buffer
var data = "TutorialsPoint.com";
buffer.write(data);
console.log(data + ": " + data.length + " characters, " + Buffer.byteLength(data, 'utf8')
+ " bytes");

//slicing a buffer
var buffer1 = buffer.slice(0,14);
console.log("buffer1 length: " + buffer1.length);
console.log("buffer1 content: " + buffer1.toString());

//modify buffer by indexes
for (var i = 0 ; i < 26 ; i++) {
 buffer[i] = i + 97; // 97 is ASCII a
}
console.log("buffer content: " + buffer.toString('ascii'));

var buffer2 = new Buffer(4);

buffer2[0] = 0x3;
buffer2[1] = 0x4;
buffer2[2] = 0x23;
buffer2[3] = 0x42;

//reading from buffer
console.log(buffer2.readUInt16BE(0));
console.log(buffer2.readUInt16LE(0));
console.log(buffer2.readUInt16BE(1));
console.log(buffer2.readUInt16LE(1));
console.log(buffer2.readUInt16BE(2));
console.log(buffer2.readUInt16LE(2));

var buffer3 = new Buffer(4);
buffer3.writeUInt16BE(0xdead, 0);
buffer3.writeUInt16BE(0xbeef, 2);

console.log(buffer3);

buffer3.writeUInt16LE(0xdead, 0);
buffer3.writeUInt16LE(0xbeef, 2);

console.log(buffer3);
//convert to a JSON Object
var json = buffer3.toJSON();
console.log("JSON Representation : ");
console.log(json);

//Get a buffer from JSON Object
var buffer6 = new Buffer(json);
console.log(buffer6);

//copy a buffer
var buffer4 = new Buffer(26);
buffer.copy(buffer4);
console.log("buffer4 content: " + buffer4.toString());

//concatenate a buffer
var buffer5 = Buffer.concat([buffer,buffer4]);
console.log("buffer5 content: " + buffer5.toString());

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

buffer length: 26
TutorialsPoint.com: 18 characters, 18 bytes

buffer1 length: 14
buffer1 content: TutorialsPoint
buffer content: abcdefghijklmnopqrstuvwxyz
772
1027
1059
8964
9026
16931
<Buffer de ad be ef>
<Buffer ad de ef be>
buffer4 content: abcdefghijklmnopqrstuvwxyz
buffer5 content: abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

NODE.JS - STREAMSNODE.JS - STREAMS
What are Streams?
Streams are objects that let yu read data from a source or write data to destination in continous
fashion. In Node, there are four types of streams.

Readable - Stream which is used for read operation.

Writable - Stream which is used for write operation.

Duplex - Stream which can be used for both read and write operation.

Transform - A type of duplex stream where the output is computed based on input.

Each type of Stream is an EventEmitter and throws several events at times. For example, some of
the commonly used events are:

data - This event is fired when there is data is available to read.

end - This event is fired when there is no more data to read.

error - This event is fired when there is any error receiving or writing data.

finish - This event is fired when all data has been flushed to underlying system

Reading from stream
Create a txt file named test.txt in C:\>Nodejs_WorkSpace

TutorialsPoint.Com

Create test.js in C:\>Nodejs_WorkSpace

var fs = require("fs");
var data = '';
//create a readable stream
var readerStream = fs.createReadStream('test.txt');

//set the encoding to be utf8.
readerStream.setEncoding('UTF8');

//handle stream events
readerStream.on('data', function(chunk) {
 data += chunk;
});

readerStream.on('end',function(){
 console.log(data);
});

readerStream.on('error', function(err){
 console.log(err.stack);
});
console.log("Program Ended");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output

Program Ended
TutorialsPoint.Com

Writing to stream
Update test.js in C:\>Nodejs_WorkSpace

var fs = require("fs");
var data = 'TutorialsPoint.Com';
//create a writable stream
var writerStream = fs.createWriteStream('test1.txt');

//write the data to stream
//set the encoding to be utf8.
writerStream.write(data,'UTF8');

//mark the end of file
writerStream.end();

//handle stream events
writerStream.on('finish', function() {
 console.log("Write completed.");
});

writerStream.on('error', function(err){
 console.log(err.stack);
});
console.log("Program Ended");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output

Program Ended
Write completed.

Open test1.txt in C:\>Nodejs_WorkSpace.Verify the result.

TutorialsPoint.Com

Piping streams
Piping is a mechanism to connect output of one stream to another stream. It is normally used to
get data from one stream and to pass output of that stream to another stream. There is no limit on
piping operations. Consider the above example, where we've read test.txt using readerStream and
write test1.txt using writerStream. Now we'll use the piping to simplify our operation or reading
from one file and writing to another file.

Update test.js in C:\>Nodejs_WorkSpace

var fs = require("fs");

//create a readable stream
var readerStream = fs.createReadStream('test.txt');

//create a writable stream
var writerStream = fs.createWriteStream('test2.txt');

//pipe the read and write operations
//read test.txt and write data to test2.txt
readerStream.pipe(writerStream);

console.log("Program Ended");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output

Program Ended

Open test2.txt in C:\>Nodejs_WorkSpace. Verify the result.

TutorialsPoint.Com

NODE.JS - FILE SYSTEMNODE.JS - FILE SYSTEM
fs module is used for File I/O. fs module can be imported using following syntax.

var fs = require("fs")

Synchronous vs Asynchronous
Every method in fs module have synchronous as well as asynchronous form. Asynchronous
methods takes a last parameter as completion function callback and first parameter of the
callback function is error. It is preferred to use asynchronous method instead of synchronous
method as former never block the program execution where the latter one does.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var fs = require("fs");

//Asynchronous read
fs.readFile('test.txt', function (err, data) {
 if (err) return console.error(err);
 console.log("Asynchronous read: " + data.toString());
});

//Synchronous read
var data = fs.readFileSync('test.txt');
console.log("Synchronous read: " + data.toString());

console.log("Program Ended");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

Synchronous read: TutorialsPoint.Com
Program Ended
Asynchronous read: TutorialsPoint.Com

Methods

Sr.
No.

method Description

1 fs.renameoldPath, newPath, callback Asynchronous rename. No arguments other than a
possible exception are given to the completion
callback.

2 fs.ftruncatefd, len, callback Asynchronous ftruncate. No arguments other than
a possible exception are given to the completion

callback.

3 fs.ftruncateSyncfd, len Synchronous ftruncate

4 fs.truncatepath, len, callback Asynchronous truncate. No arguments other than a
possible exception are given to the completion
callback.

5 fs.truncateSyncpath, len Synchronous truncate

6 fs.chownpath, uid, gid, callback Asynchronous chown. No arguments other than a
possible exception are given to the completion
callback.

7 fs.chownSyncpath, uid, gid Synchronous chown

8 fs.fchownfd, uid, gid, callback Asynchronous fchown. No arguments other than a
possible exception are given to the completion
callback.

9 fs.fchownSyncfd, uid, gid Synchronous fchown

10 fs.lchownpath, uid, gid, callback Asynchronous lchown. No arguments other than a
possible exception are given to the completion
callback.

11 fs.lchownSyncpath, uid, gid Synchronous lchown

12 fs.chmodpath, mode, callback Asynchronous chmod. No arguments other than a
possible exception are given to the completion
callback.

13 fs.chmodSyncpath, mode Synchronous chmod.

14 fs.fchmodfd, mode, callback Asynchronous fchmod. No arguments other than a
possible exception are given to the completion
callback.

15 fs.fchmodSyncfd, mode Synchronous fchmod.

16 fs.lchmodpath, mode, callback Asynchronous lchmod. No arguments other than a
possible exception are given to the completion
callback.Only available on Mac OS X.

17 fs.lchmodSyncpath, mode Synchronous lchmod.

18 fs.statpath, callback Asynchronous stat. The callback gets two
arguments err, stats where stats is a fs.Stats object.

19 fs.lstatpath, callback Asynchronous lstat. The callback gets two
arguments err, stats where stats is a fs.Stats object.
lstat is identical to stat, except that if path is a
symbolic link, then the link itself is stat-ed, not the
file that it refers to.

20 fs.fstatfd, callback Asynchronous fstat. The callback gets two
arguments err, stats where stats is a fs.Stats object.
fstat is identical to stat, except that the file to be
stat-ed is specified by the file descriptor fd.

21 fs.statSyncpath Synchronous stat. Returns an instance of fs.Stats.

22 fs.lstatSyncpath Synchronous lstat. Returns an instance of fs.Stats.

23 fs.fstatSyncfd Synchronous fstat. Returns an instance of fs.Stats.

24 fs.linksrcpath, dstpath, callback Asynchronous link. No arguments other than a
possible exception are given to the completion
callback.

25 fs.linkSyncsrcpath, dstpath Synchronous link.

26 fs.symlink
srcpath, dstpath[, type], callback

Asynchronous symlink. No arguments other than a
possible exception are given to the completion
callback. The type argument can be set to 'dir',
'file', or 'junction' defaultis′file ′ and is only available
on Windows ignoredonotherplatforms. Note that
Windows junction points require the destination
path to be absolute. When using 'junction', the
destination argument will automatically be
normalized to absolute path.

27 fs.symlinkSyncsrcpath, dstpath[, type] Synchronous symlink.

28 fs.readlinkpath, callback Asynchronous readlink. The callback gets two
arguments err, linkString.

29 fs.realpathpath[, cache], callback Asynchronous realpath. The callback gets two
arguments err, resolvedPath. May use process.cwd to
resolve relative paths. cache is an object literal of
mapped paths that can be used to force a specific
path resolution or avoid additional fs.stat calls for
known real paths.

30 fs.realpathSyncpath[, cache] Synchronous realpath. Returns the resolved path.

31 fs.unlinkpath, callback Asynchronous unlink. No arguments other than a
possible exception are given to the completion
callback.

32 fs.unlinkSyncpath Synchronous unlink.

33 fs.rmdirpath, callback Asynchronous rmdir. No arguments other than a
possible exception are given to the completion
callback.

34 fs.rmdirSyncpath Synchronous rmdir.

35 fs.mkdirpath[, mode], callback SAsynchronous mkdir2. No arguments other than a
possible exception are given to the completion
callback. mode defaults to 0777.

36 fs.mkdirSyncpath[, mode] Synchronous mkdir.

37 fs.readdirpath, callback Asynchronous readdir3. Reads the contents of a
directory. The callback gets two arguments err, files
where files is an array of the names of the files in
the directory excluding '.' and '..'.

38 fs.readdirSyncpath Synchronous readdir. Returns an array of
filenames excluding '.' and '..'.

39 fs.closefd, callback Asynchronous close. No arguments other than a
possible exception are given to the completion
callback.

40 fs.closeSyncfd Synchronous close.

41 fs.openpath, flags[, mode], callback Asynchronous file open.

42 fs.openSyncpath, flags[, mode] Synchronous version of fs.open.

43 fs.utimespath, atime, mtime, callback

44 fs.utimesSyncpath, atime, mtime Change file timestamps of the file referenced by
the supplied path.

45 fs.futimesfd, atime, mtime, callback

46 fs.futimesSyncfd, atime, mtime Change the file timestamps of a file referenced by
the supplied file descriptor.

47 fs.fsyncfd, callback Asynchronous fsync2. No arguments other than a

possible exception are given to the completion
callback.

48 fs.fsyncSyncfd Synchronous fsync2.

49 fs.write
fd, buffer, offset, length[, position], callback

Write buffer to the file specified by fd.

50 fs.write
fd, data[, position[, encoding]], callback

Write data to the file specified by fd. If data is not a
Buffer instance then the value will be coerced to a
string.

51 fs.writeSync
fd, buffer, offset, length[, position]

Synchronous versions of fs.write. Returns the
number of bytes written.

52 fs.writeSync
fd, data[, position[, encoding]]

Synchronous versions of fs.write. Returns the
number of bytes written.

53 fs.read
fd, buffer, offset, length, position, callback

Read data from the file specified by fd.

54 fs.readSync
fd, buffer, offset, length, position

Synchronous version of fs.read. Returns the
number of bytesRead.

55 fs.readFilefilename[, options], callback Asynchronously reads the entire contents of a file.

56 fs.readFileSyncfilename[, options] Synchronous version of fs.readFile. Returns the
contents of the filename.

57 fs.writeFile
filename, data[, options], callback

Asynchronously writes data to a file, replacing the
file if it already exists. data can be a string or a
buffer.

58 fs.writeFileSync
filename, data[, options]

The synchronous version of fs.writeFile.

59 fs.appendFile
filename, data[, options], callback

Asynchronously append data to a file, creating the
file if it not yet exists. data can be a string or a
buffer.

60 fs.appendFileSync
filename, data[, options]

The synchronous version of fs.appendFile.

61 fs.watchFilefilename[, options], listener Watch for changes on filename. The callback
listener will be called each time the file is
accessed.

62 fs.unwatchFilefilename[, listener] Stop watching for changes on filename. If listener
is specified, only that particular listener is
removed. Otherwise, all listeners are removed and
you have effectively stopped watching filename.

63 fs.watchfilename[, options][, listener] Watch for changes on filename, where filename is
either a file or a directory. The returned object is a
fs.FSWatcher.

64 fs.existspath, callback Test whether or not the given path exists by
checking with the file system. Then call the
callback argument with either true or false.

65 fs.existsSyncpath Synchronous version of fs.exists.

66 fs.accesspath[, mode], callback Tests a user's permissions for the file specified by
path. mode is an optional integer that specifies the
accessibility checks to be performed.

67 fs.accessSyncpath[, mode] Synchronous version of fs.access. This throws if
any accessibility checks fail, and does nothing
otherwise.

68 fs.createReadStreampath[, options] Returns a new ReadStream object.

69 fs.createWriteStreampath[, options] Returns a new WriteStream object.

70 fs.symlink
srcpath, dstpath[, type], callback

Asynchronous symlink. No arguments other than a
possible exception are given to the completion
callback. The type argument can be set to 'dir',
'file', or 'junction' defaultis′file ′ and is only available
on Windows ignoredonotherplatforms. Note that
Windows junction points require the destination
path to be absolute. When using 'junction', the
destination argument will automatically be
normalized to absolute path.

Flags
flags for read/write operations are:

r - Open file for reading. An exception occurs if the file does not exist.

r+ - Open file for reading and writing. An exception occurs if the file does not exist.

rs - Open file for reading in synchronous mode. Instructs the operating system to bypass the
local file system cache. This is primarily useful for opening files on NFS mounts as it allows
you to skip the potentially stale local cache. It has a very real impact on I/O performance so
don't use this flag unless you need it. Note that this doesn't turn fs.open into a synchronous
blocking call. If that's what you want then you should be using fs.openSync

rs+ - Open file for reading and writing, telling the OS to open it synchronously. See notes for
'rs' about using this with caution.

w - Open file for writing. The file is created ifitdoesnotexist or truncated ifitexists.

wx - Like 'w' but fails if path exists.

w+ - Open file for reading and writing. The file is created ifitdoesnotexist or truncated ifitexists.

wx+ - Like 'w+' but fails if path exists.

a - Open file for appending. The file is created if it does not exist.

ax - Like 'a' but fails if path exists.

a+ - Open file for reading and appending. The file is created if it does not exist.

ax+' - Like 'a+' but fails if path exists.

Example
Create a txt file named test.txt in C:\>Nodejs_WorkSpace

TutorialsPoint.Com

Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var fs = require("fs");
var buffer = new Buffer(1024);

//Example: Opening File
function openFile(){
 console.log("\nOpen file");
 fs.open('test.txt', 'r+', function(err,fd) {
 if (err) console.log(err.stack);
 console.log("File opened");
 });
}

//Example: Getting File Info
function getStats(){
 console.log("\nGetting File Info");
 fs.stat('test.txt', function (err, stats) {

 if (err) console.log(err.stack);
 console.log(stats);
 console.log("isFile ? "+stats.isFile());
 console.log("isDirectory ? "+stats.isDirectory());
 });
}

//Example: Writing File
function writeFile(){
 console.log("\nWrite file");
 fs.open('test1.txt', 'w+', function(err,fd) {
 var data = "TutorialsPoint.com - Simply Easy Learning!";
 buffer.write(data);

 fs.write(fd, buffer,0,data.length,0,function(err, bytes){
 if (err) console.log(err.stack);
 console.log(bytes + " written!");
 });
 });
}

//Example: Read File
function readFile(){
 console.log("\nRead file");
 fs.open('test1.txt', 'r+', function(err,fd) {
 if (err) console.log(err.stack);
 fs.read(fd, buffer,0,buffer.length,0,function(err, bytes){
 if (err) console.log(err.stack);
 console.log(bytes + " read!");
 if(bytes > 0){
 console.log(buffer.slice(0,bytes).toString());
 }
 });
 });
}

function closeFile(){
 console.log("\nClose file");
 fs.open('test.txt', 'r+', function(err,fd) {
 if (err) console.log(err.stack);
 fs.close(fd,function(){
 if (err) console.log(err.stack);
 console.log("File closed!");
 });
 });
}

function deleteFile(){
 console.log("\nDelete file");
 fs.open('test1.txt', 'r+', function(err,fd) {
 fs.unlink('test1.txt', function(err) {
 if (err) console.log(err.stack);
 console.log("File deleted!");
 });
 });
}

function truncateFile(){
 console.log("\nTruncate file");
 fs.open('test.txt', 'r+', function(err,fd) {
 fs.ftruncate(fd, function(err) {
 if (err) console.log(err.stack);
 console.log("File truncated!");
 });
 });
}

function createDirectory(){
 console.log("\nCreate Directory");
 fs.mkdir('test',function(err){
 if(!err){
 console.log("Directory created!");
 }
 if(err && err.code === 'EEXIST'){
 console.log("Directory exists!");

 } else if (err) {
 console.log(err.stack);
 }
 });
}

function removeDirectory(){
 console.log("\nRemove Directory");
 fs.rmdir('test',function(err){
 if(!err){
 console.log("Directory removed!");
 }
 if (err) {
 console.log("Directory do not exist!");
 }
 });
}

function watchFile(){
 fs.watch('test.txt', function (event, filename) {
 console.log('event is: ' + event);
 });
}

//Opening file
openFile();

//Writing File
writeFile();

//Reading File
readFile();

//Closing Files
closeFile();

//Getting file information
getStats();

//Deleting Files
deleteFile();

//Truncating Files
truncateFile();

//Creating Directories
createDirectory();

//Removing Directories
removeDirectory();

//Watching File Changes
watchFile();

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

Open file

Write file

Read file

Close file

Getting File Info

Delete file

Truncate file

Create Directory

Remove Directory
File opened
{ dev: 0,
 mode: 33206,
 nlink: 1,
 uid: 0,
 gid: 0,
 rdev: 0,
 ino: 0,
 size: 0,
 atime: Fri Jan 01 2010 00:02:15 GMT+0530 (India Standard Time),
 mtime: Sun Feb 15 2015 13:33:09 GMT+0530 (India Standard Time),
 ctime: Fri Jan 01 2010 00:02:15 GMT+0530 (India Standard Time) }
isFile ? true
isDirectory ? false
Directory created!
Directory removed!
event is: rename
event is: rename
42 written!
42 read!
TutorialsPoint.com - Simply Easy Learning!
File closed!
File deleted!
File truncated!
event is: change

NODE.JS - UTILITY MODULESNODE.JS - UTILITY MODULES
In this article, we'll discuss some of the utility modules provided by Node.js library which are very
common and are frequently used across the applications.

Sr.No. Module Name & Description

1 Console
Used to print information on stdout and stderr.

2 Process
Used to get information on current process. Provides multiple events related to
process activities.

3 OS Module
Provides basic operating-system related utility functions.

4 Path Module
Provides utilities for handling and transforming file paths.

5 Net Module
Provides both servers and clients as streams. Acts as a network wrapper.

6 DNS Module
Provides functions to do actual DNS lookup as well as to use underlying operating
system name resolution functionalities.

7 Domain Module
Provides way to handle multiple different I/O operations as a single group.

NODE.JS - CONSOLENODE.JS - CONSOLE
console is a global object and is used to print to stdout and stderr. It is used in synchronous way
when destination is file or a terminal and asynchronous way when destination is a pipe.

Methods

Sr.
No.

method Description

1 console.log
[data][, . . .]

Prints to stdout with newline. This function can take multiple
arguments in a printf-like way.

2 console.info
[data][, . . .]

Prints to stdout with newline. This function can take multiple
arguments in a printf-like way.

3 console.error
[data][, . . .]

Prints to stderr with newline. This function can take multiple
arguments in a printf-like way.

4 console.warn
[data][, . . .]

Prints to stderr with newline. This function can take multiple
arguments in a printf-like way

5 console.dir
obj[, options]

Uses util.inspect on obj and prints resulting string to stdout.

6 console.timelabel Mark a time.

7 console.timeEnd
label

Finish timer, record output.

8 console.trace
message[, . . .]

Print to stderr 'Trace :', followed by the formatted message and
stack trace to the current position.

9 console.assert
value[, message][, . . .]

Similar to assert.ok, but the error message is formatted as
util.formatmessage. . . .

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var counter = 10;

console.log("Counter: %d", counter);

console.time("Getting data");
//make a database call to retrive the data
//getDataFromDataBase();
console.timeEnd('Getting data');

console.info("Program Ended!")

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

Counter: 10
Getting data: 0ms
Program Ended!

NODE.JS - PROCESSNODE.JS - PROCESS
process is a global object and is used to represent Node process.

Exit Codes
Node normally exit with a 0 status code when no more async operations are pending. There are
other exit codes which are described below:

Code Name Description

1 Uncaught
Fatal
Exception

There was an uncaught exception, and it was not handled by a domain or
an uncaughtException event handler.

2 Unused reserved by Bash for builtin misuse

3 Internal
JavaScript
Parse
Error

The JavaScript source code internal in Node's bootstrapping process
caused a parse error. This is extremely rare, and generally can only
happen during development of Node itself.

4 Internal
JavaScript
Evaluation
Failure

The JavaScript source code internal in Node's bootstrapping process
failed to return a function value when evaluated. This is extremely rare,
and generally can only happen during development of Node itself.

5 Fatal
Error

There was a fatal unrecoverable error in V8. Typically a message will be
printed to stderr with the prefix FATAL ERROR.

6 Non-
function
Internal
Exception
Handler

There was an uncaught exception, but the internal fatal exception
handler function was somehow set to a non-function, and could not be
called.

7 Internal
Exception
Handler
Run-Time
Failure

here was an uncaught exception, and the internal fatal exception handler
function itself threw an error while attempting to handle it.

8 Unused

9 Invalid
Argument

Either an unknown option was specified, or an option requiring a value
was provided without a value.

10 Internal
JavaScript
Run-Time
Failure

The JavaScript source code internal in Node's bootstrapping process
threw an error when the bootstrapping function was called. This is
extremely rare, and generally can only happen during development of
Node itself.

12 Invalid
Debug
Argument

The --debug and/or --debug-brk options were set, but an invalid port
number was chosen.

>128 Signal
Exits

If Node receives a fatal signal such as SIGKILL or SIGHUP, then its exit
code will be 128 plus the value of the signal code. This is a standard Unix
practice, since exit codes are defined to be 7-bit integers, and signal exits
set the high-order bit, and then contain the value of the signal code.

Events
Process is an eventEmitter and it emits the following events.

Sr.No. Event Description

1 exit Emitted when the process is about to exit. There is no way to
prevent the exiting of the event loop at this point, and once all
exit listeners have finished running the process will exit.

2 beforeExit This event is emitted when node empties it's event loop and
has nothing else to schedule. Normally, node exits when there
is no work scheduled, but a listener for 'beforeExit' can make
asynchronous calls, and cause node to continue.

3 uncaughtException Emitted when an exception bubbles all the way back to the
event loop. If a listener is added for this exception, the default
action whichistoprintastacktraceandexit will not occur.

4 Signal Events Emitted when the processes receives a signal such as SIGINT,
SIGHUP, etc.

Properties
Process provides many useful properties to get better control over system interactions.

Sr.No. Property Description

1 stdout A Writable Stream to stdout.

2 stderr A Writable Stream to stderr.

3 stdin A Writable Stream to stdin.

4 argv An array containing the command line arguments. The first element
will be 'node', the second element will be the name of the JavaScript
file. The next elements will be any additional command line
arguments.

5 execPath This is the absolute pathname of the executable that started the
process.

6 execArgv This is the set of node-specific command line options from the
executable that started the process.

7 env An object containing the user environment.

8 exitCode A number which will be the process exit code, when the process either
exits gracefully, or is exited via process.exit without specifying a code.

9 version A compiled-in property that exposes NODE_VERSION.

10 versions A property exposing version strings of node and its dependencies.

11 config An Object containing the JavaScript representation of the configure
options that were used to compile the current node executable. This is
the same as the "config.gypi" file that was produced when running the
./configure script.

12 pid The PID of the process.

13 title Getter/setter to set what is displayed in 'ps'.

14 arch What processor architecture you're running on: 'arm', 'ia32', or 'x64'.

15 platform What platform you're running on: 'darwin', 'freebsd', 'linux', 'sunos' or
'win32'

16 mainModule Alternate way to retrieve require.main. The difference is that if the
main module changes at runtime, require.main might still refer to the
original main module in modules that were required before the
change occurred. Generally it's safe to assume that the two refer to
the same module.

Methods
Process provides many useful methods to get better control over system interactions.

Sr.No. Method Description

1 abort This causes node to emit an abort. This will cause node to exit and
generate a core file.

2 chdirdirectory Changes the current working directory of the process or throws an

exception if that fails.

3 cwd Returns the current working directory of the process.

4 exit[code] Ends the process with the specified code. If omitted, exit uses the
'success' code 0.

5 getgid Gets the group identity of the process. This is the numerical group
id, not the group name.This function is only available on POSIX
platforms i. e. notWindows, Android.

6 setgidid Sets the group identity of the process. Seesetgid(2.) This accepts either
a numerical ID or a groupname string. If a groupname is specified,
this method blocks while resolving it to a numerical ID.This function
is only available on POSIX platforms i. e. notWindows, Android.

7 getuid Gets the user identity of the process. This is the numerical id, not the
username.This function is only available on POSIX platforms
i. e. notWindows, Android.

8 setuidid Sets the user identity of the process. Seesetgid(2.) This accepts either a
numerical ID or a username string. If a username is specified, this
method blocks while resolving it to a numerical ID.This function is
only available on POSIX platforms i. e. notWindows, Android.

9 getgroups Returns an array with the supplementary group IDs. POSIX leaves it
unspecified if the effective group ID is included but node.js ensures
it always is.This function is only available on POSIX platforms
i. e. notWindows, Android.

10 setgroups
groups

Sets the supplementary group IDs. This is a privileged operation,
meaning you need to be root or have the CAP_SETGID
capability.This function is only available on POSIX platforms
i. e. notWindows, Android.

11 initgroups
user, extragroup

Reads /etc/group and initializes the group access list, using all
groups of which the user is a member. This is a privileged operation,
meaning you need to be root or have the CAP_SETGID
capability.This function is only available on POSIX platforms
i. e. notWindows, Android.

12 killpid[, signal] Send a signal to a process. pid is the process id and signal is the
string describing the signal to send. Signal names are strings like
'SIGINT' or 'SIGHUP'. If omitted, the signal will be 'SIGTERM'.

13 memoryUsage Returns an object describing the memory usage of the Node
process measured in bytes.

14 nextTick
callback

Once the current event loop turn runs to completion, call the
callback function.

15 umask[mask] Sets or reads the process's file mode creation mask. Child processes
inherit the mask from the parent process. Returns the old mask if
mask argument is given, otherwise returns the current mask.

16 uptime Number of seconds Node has been running.

17 hrtime Returns the current high-resolution real time in a [seconds,
nanoseconds] tuple Array. It is relative to an arbitrary time in the
past. It is not related to the time of day and therefore not subject to
clock drift. The primary use is for measuring performance between
intervals.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var util = require('util');

//printing to console
process.stdout.write("Hello World!" + "\n");

//reading passed parameter
process.argv.forEach(function(val, index, array) {
 console.log(index + ': ' + val);
});

//executable path
console.log(process.execPath);

//print the current directory
console.log('Current directory: ' + process.cwd());

//print the process version
console.log('Current version: ' + process.version);

//print the memory usage
console.log(util.inspect(process.memoryUsage()));

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

Hello World!
0: node
1: C:\Nodejs_WorkSpace\test.js
2: one
3: 2
4: three
C:\Program Files\nodejs\node.exe
Current directory: C:\Nodejs_WorkSpace
Current version: v0.10.36
{ rss: 9314304, heapTotal: 3047296, heapUsed: 1460196 }

NODE.JS - OS MODULENODE.JS - OS MODULE
os module is used for few basic operating-system related utility functions. os module can be
imported using following syntax.

var os = require("os")

Methods

Sr.
No.

method Description

1 os.tmpdir Returns the operating system's default directory for temp files.

2 os.endianness Returns the endianness of the CPU. Possible values are "BE" or "LE".

3 os.hostname Returns the hostname of the operating system.

4 os.type Returns the operating system name.

5 os.platform Returns the operating system platform.

6 os.arch Returns the operating system CPU architecture. Possible values are
"x64", "arm" and "ia32".

7 os.release Returns the operating system release.

8 os.uptime Returns the system uptime in seconds.

9 os.loadavg Returns an array containing the 1, 5, and 15 minute load averages.

10 os.totalmem Returns the total amount of system memory in bytes.

11 os.freemem Returns the amount of free system memory in bytes.

12 os.cpus Returns an array of objects containing information about each CPU/core
installed: model, speed inMHz, and times
anobjectcontainingthenumberofmillisecondstheCPU/corespentin: user, nice, sys, idle, andirq
.

13 os.networkInterfaces Get a list of network interfaces.

Properties

Sr.
No.

property Description

1 os.EOL A constant defining the appropriate End-of-line marker for the operating
system.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var os = require("os");

//endianness
console.log('endianness : ' + os.endianness());

//type
console.log('type : ' + os.type());

//platform
console.log('platform : ' + os.platform());

//totalmem
console.log('total memory : ' + os.totalmem() + " bytes.");

//freemem
console.log('free memory : ' + os.freemem() + " bytes.");

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

endianness : LE
type : Windows_NT
platform : win32
total memory : 1072152576 bytes.
free memory : 461508608 bytes.

NODE.JS - PATH MODULENODE.JS - PATH MODULE
path module is used for handling and transforming file paths. path module can be imported using
following syntax.

var path = require("path")

Properties
Process provides many useful properties to get better control over system interactions.

Sr.No. Property Description

1 path.sep The platform-specific file separator. '\\' or '/'.

2 path.delimiter The platform-specific path delimiter, ; or ':'.

3 path.posix Provide access to aforementioned path methods but always interact
in a posix compatible way.

4 path.win32 Provide access to aforementioned path methods but always interact
in a win32 compatible way.

Methods

Sr.
No.

method Description

1 path.normalizep Normalize a string path, taking care of '..' and '.' parts.

2 path.join[path1][,
path2][, ...]

Join all arguments together and normalize the resulting path.

3 path.resolve[from ...],
to

Resolves to to an absolute path.

4 path.isAbsolutepath Determines whether path is an absolute path. An absolute
path will always resolve to the same location, regardless of
the working directory.

5 path.relativefrom, to Solve the relative path from from to to.

6 path.dirnamep Return the directory name of a path. Similar to the Unix
dirname command.

7 path.basenamep[, ext] Return the last portion of a path. Similar to the Unix
basename command.

8 path.extnamep Return the extension of the path, from the last '.' to end of
string in the last portion of the path. If there is no '.' in the last
portion of the path or the first character of it is '.', then it
returns an empty string.

9 path.parsepathString Returns an object from a path string.

10 path.formatpathObject Returns a path string from an object, the opposite of
path.parse above.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var path = require("path");

//normalization
console.log('normalization : ' + path.normalize('/test/test1//2slashes/1slash/tab/..'));

//join
console.log('joint path : ' + path.join('/test', 'test1', '2slashes/1slash', 'tab', '..'));

//resolve
console.log('resolve : ' + path.resolve('test.js'));

//extName
console.log('ext name : ' + path.extname('test.js'));

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

normalization : \test\test1\2slashes\1slash
joint path : \test\test1\2slashes\1slash
resolve : C:\Nodejs_WorkSpace\test.js
ext name : .js

NODE.JS - NET MODULENODE.JS - NET MODULE
net module is used to create both servers and clients. It provides an aynchronous network
wrapper. net module can be imported using following syntax.

var net = require("net")

Methods

Sr.
No.

method Description

1 net.createServer[options][,
connectionListener]

Creates a new TCP server. The connectionListener
argument is automatically set as a listener for the
'connection' event.

2 net.connectoptions[,
connectionListener]

A factory method, which returns a new 'net.Socket'
and connects to the supplied address and port.

3 net.createConnectionoptions[,
connectionListener]

A factory method, which returns a new 'net.Socket'
and connects to the supplied address and port.

4 net.connectport[, host][,
connectListener]

Creates a TCP connection to port on host. If host is
omitted, 'localhost' will be assumed. The
connectListener parameter will be added as an
listener for the 'connect' event. Is a factory method
which returns a new 'net.Socket'.

5 net.createConnectionport[,
host][, connectListener]

Creates a TCP connection to port on host. If host is
omitted, 'localhost' will be assumed. The
connectListener parameter will be added as an
listener for the 'connect' event. Is a factory method
which returns a new 'net.Socket'.

6 net.connectpath[,
connectListener]

Creates unix socket connection to path. The
connectListener parameter will be added as an
listener for the 'connect' event. A factory method
which returns a new 'net.Socket'.

7 net.createConnectionpath[,
connectListener]

Creates unix socket connection to path. The
connectListener parameter will be added as an
listener for the 'connect' event. A factory method
which returns a new 'net.Socket'.

8 net.isIPinput Tests if input is an IP address. Returns 0 for invalid
strings, returns 4 for IP version 4 addresses, and
returns 6 for IP version 6 addresses.

9 net.isIPv4input Returns true if input is a version 4 IP address,
otherwise returns false.

10 net.isIPv6input Returns true if input is a version 6 IP address,
otherwise returns false.

Class:net.Server
This class is used to create a TCP or local server.

Methods

Sr.
No.

method Description

1 server.listenport[, host][,
backlog][, callback]

Begin accepting connections on the specified port
and host. If the host is omitted, the server will accept
connections directed to any IPv4 address
INADDR_ANY. A port value of zero will assign a
random port.

2 server.listenpath[, callback] Start a local socket server listening for connections
on the given path.

3 server.listenhandle[, callback] The handle object can be set to either a server or
socket anything with an underlying _handle member,
or a {fd: <n>} object. This will cause the server to
accept connections on the specified handle, but it is
presumed that the file descriptor or handle has
already been bound to a port or domain socket.
Listening on a file descriptor is not supported on
Windows.

4 server.listenoptions[,
callback]

The port, host, and backlog properties of options, as
well as the optional callback function, behave as they
do on a call to server.listenport, [host], [backlog],
[callback] . Alternatively, the path option can be used
to specify a UNIX socket.

5 server.close[callback] finally closed when all connections are ended and
the server emits a 'close' event.

6 server.address Returns the bound address, the address family name
and port of the server as reported by the operating
system.

7 server.unref Calling unref on a server will allow the program to
exit if this is the only active server in the event
system. If the server is already unrefd calling unref
again will have no effect.

8 server.ref Opposite of unref, calling ref on a previously unrefd
server will not let the program exit if it's the only
server left the default behavior. If the server is refd
calling ref again will have no effect.

9 server.getConnectionscallback Asynchronously get the number of concurrent
connections on the server. Works when sockets were
sent to forks. Callback should take two arguments err
and count.

Events

Sr.
No.

event Description

1 listening Emitted when the server has been bound after calling server.listen.

2 connection Emitted when a new connection is made. Socket object, The connection
object is available to event handler. Socket is an instance of net.Socket.

3 close Emitted when the server closes. Note that if connections exist, this event is
not emitted until all connections are ended.

4 error Emitted when an error occurs. The 'close' event will be called directly
following this event.

Class:net.Socket
This object is an abstraction of a TCP or local socket. net.Socket instances implement a duplex
Stream interface. They can be created by the user and used as a client with connect() or they can
be created by Node and passed to the user through the 'connection' event of a server.

Events
net.Socket is an eventEmitter and it emits the following events.

Sr.No. Event Description

1 lookup Emitted after resolving the hostname but before connecting. Not
applicable to UNIX sockets.

2 connect Emitted when a socket connection is successfully established.

3 data Emitted when data is received. The argument data will be a Buffer or
String. Encoding of data is set by socket.setEncoding.

4 end Emitted when the other end of the socket sends a FIN packet.

5 timeout Emitted if the socket times out from inactivity. This is only to notify that the
socket has been idle. The user must manually close the connection.

6 drain Emitted when the write buffer becomes empty. Can be used to throttle
uploads.

7 error Emitted when an error occurs. The 'close' event will be called directly
following this event.

8 close Emitted once the socket is fully closed. The argument had_error is a
boolean which says if the socket was closed due to a transmission error.

Properties
net.Socket provides many useful properties to get better control over socket interactions.

Sr.No. Property Description

1 socket.bufferSize This property shows the number of characters currently
buffered to be written.

2 socket.remoteAddress The string representation of the remote IP address. For
example, '74.125.127.100' or '2001:4860:a005::68'.

3 socket.remoteFamily The string representation of the remote IP family. 'IPv4' or
'IPv6'.

4 socket.remotePort The numeric representation of the remote port. For
example, 80 or 21.

5 socket.localAddress The string representation of the local IP address the
remote client is connecting on. For example, if you are
listening on '0.0.0.0' and the client connects on
'192.168.1.1', the value would be '192.168.1.1'.

6 socket.localPort The numeric representation of the local port. For example,
80 or 21.

7 socket.bytesRead The amount of received bytes.

8 socket.bytesWritten The amount of bytes sent.

Methods

Sr.
No.

method Description

1 new net.Socket[options] Construct a new socket object.

2 socket.connectport[, host][,
connectListener]

Opens the connection for a given socket. If port and
host are given, then the socket will be opened as a
TCP socket, if host is omitted, localhost will be
assumed. If a path is given, the socket will be opened
as a unix socket to that path.

3 socket.connectpath[,
connectListener]

Opens the connection for a given socket. If port and
host are given, then the socket will be opened as a
TCP socket, if host is omitted, localhost will be
assumed. If a path is given, the socket will be opened
as a unix socket to that path.

4 socket.setEncoding[encoding] Set the encoding for the socket as a Readable
Stream.

5 socket.writedata[, encoding][,
callback]

Sends data on the socket. The second parameter
specifies the encoding in the case of a string--it
defaults to UTF8 encoding.

6 socket.end[data][, encoding] Half-closes the socket. i.e., it sends a FIN packet. It is
possible the server will still send some data.

7 socket.destroy Ensures that no more I/O activity happens on this
socket. Only necessary in case of errors parse error
or so.

8 socket.pause Pauses the reading of data. That is, 'data' events will
not be emitted. Useful to throttle back an upload.

9 socket.resume Resumes reading after a call to pause.

10 socket.setTimeouttimeout[,
callback]

Sets the socket to timeout after timeout milliseconds
of inactivity on the socket. By default net.Socket do
not have a timeout.

11 socket.setNoDelay[noDelay] Disables the Nagle algorithm. By default TCP
connections use the Nagle algorithm, they buffer data
before sending it off. Setting true for noDelay will
immediately fire off data each time socket.write is
called. noDelay defaults to true.

12 socket.setKeepAlive[enable][,
initialDelay]

Enable/disable keep-alive functionality, and
optionally set the initial delay before the first
keepalive probe is sent on an idle socket. enable
defaults to false.

13 socket.address Returns the bound address, the address family name
and port of the socket as reported by the operating
system. Returns an object with three properties, e.g. {
port: 12346, family: 'IPv4', address: '127.0.0.1' }.

14 socket.unref Calling unref on a socket will allow the program to
exit if this is the only active socket in the event
system. If the socket is already unrefd calling unref
again will have no effect.

15 socket.ref Opposite of unref, calling ref on a previously unrefd
socket will not let the program exit if it's the only
socket left the default behavior. If the socket is refd
calling ref again will have no effect.

Example
Create a js file named server.js in C:\>Nodejs_WorkSpace.

File: server.js

var net = require('net');
var server = net.createServer(function(connection) {
 console.log('client connected');
 connection.on('end', function() {
 console.log('client disconnected');
 });
 connection.write('Hello World!\r\n');
 connection.pipe(connection);
});
server.listen(8080, function() {
 console.log('server is listening');
});

Now run the server.js to see the result:

C:\Nodejs_WorkSpace>node server.js

Verify the Output.

server is listening

Create a js file named client.js in C:\>Nodejs_WorkSpace.

File: client.js

var net = require('net');
var client = net.connect({port: 8080}, function() {
 console.log('connected to server!');
});
client.on('data', function(data) {
 console.log(data.toString());
 client.end();
});
client.on('end', function() {
 console.log('disconnected from server');
});

Now run the client.js in another terminal to see the result:

C:\Nodejs_WorkSpace>node client.js

Verify the Output.

connected to server!
Hello World!

disconnected from server

Verify the Output on terminal where server.js is running.

server is listening
client connected
client disconnected

NODE.JS - DNS MODULENODE.JS - DNS MODULE
dns module is used to do actual DNS lookup as well as to use underlying operating system name
resolution functionalities.. It provides an aynchronous network wrapper. dns module can be
imported using following syntax.

var dns = require("dns")

Methods

Sr.
No.

method Description

1 dns.lookuphostname[,
options], callback

Resolves a hostname e.g. 'google.com' into the first
found A IPv4 or AAAA IPv6 record. options can be an
object or integer. If options is not provided, then IP v4
and v6 addresses are both valid. If options is an
integer, then it must be 4 or 6.

2 dns.lookupServiceaddress,
port, callback

Resolves the given address and port into a hostname
and service using getnameinfo.

3 dns.resolvehostname[,
rrtype], callback

Resolves a hostname e.g. 'google.com' into an array of
the record types specified by rrtype.

4 dns.resolve4hostname,
callback

The same as dns.resolve, but only for IPv4 queries A
records. addresses is an array of IPv4 addresses e.g.
['74.125.79.104', '74.125.79.105', '74.125.79.106'].

5 dns.resolve6hostname,
callback

The same as dns.resolve4 except for IPv6 queries an
AAAA query.

6 dns.resolveMxhostname,
callback

The same as dns.resolve, but only for mail exchange
queries MX records.

7 dns.resolveTxthostname,
callback

The same as dns.resolve, but only for text queries TXT
records. addresses is an 2-d array of the text records
available for hostname e.g., [['v=spf1 ip4:0.0.0.0 ',
'~all']]. Each sub-array contains TXT chunks of one
record. Depending on the use case, the could be either
joined together or treated separately.

8 dns.resolveSrvhostname,
callback

The same as dns.resolve, but only for service records
SRV records. addresses is an array of the SRV records
available for hostname. Properties of SRV records are
priority, weight, port, and name e.g., [{'priority': 10,
'weight': 5, 'port': 21223, 'name':
'service.example.com'}, ...].

9 dns.resolveSoahostname,
callback

The same as dns.resolve, but only for start of authority
record queries SOA record.

10 dns.resolveNshostname,
callback

The same as dns.resolve, but only for name server
records NS records. addresses is an array of the name
server records available for hostname e.g.,
['ns1.example.com', 'ns2.example.com'].

11 dns.resolveCnamehostname,
callback

The same as dns.resolve, but only for canonical name
records CNAME records. addresses is an array of the
canonical name records available for hostname e.g.,
['bar.example.com'].

12 dns.reverseip, callback Reverse resolves an ip address to an array of
hostnames.

13 dns.getServers Returns an array of IP addresses as strings that are
currently being used for resolution.

14 dns.setServersservers Given an array of IP addresses as strings, set them as
the servers to use for resolving.

rrtypes
Following is the list of valid rrtypes used by dns.resolve method

A - IPV4 addresses, default

AAAA - IPV6 addresses

MX - mail exchange records

TXT - text records

SRV - SRV records

PTR - used for reverse IP lookups

NS - name server records

CNAME - canonical name records

SOA - start of authority record

Error Codes
Each DNS query can return one of the following error codes:

dns.NODATA - DNS server returned answer with no data.

dns.FORMERR - DNS server claims query was misformatted.

dns.SERVFAIL - DNS server returned general failure.

dns.NOTFOUND - Domain name not found.

dns.NOTIMP - DNS server does not implement requested operation.

dns.REFUSED - DNS server refused query.

dns.BADQUERY - Misformatted DNS query.

dns.BADNAME - Misformatted hostname.

dns.BADFAMILY - Unsupported address family.

dns.BADRESP - Misformatted DNS reply.

dns.CONNREFUSED - Could not contact DNS servers.

dns.TIMEOUT - Timeout while contacting DNS servers.

dns.EOF - End of file.

dns.FILE - Error reading file.

dns.NOMEM - Out of memory.

dns.DESTRUCTION - Channel is being destroyed.

dns.BADSTR - Misformatted string.

dns.BADFLAGS - Illegal flags specified.

dns.NONAME - Given hostname is not numeric.

dns.BADHINTS - Illegal hints flags specified.

dns.NOTINITIALIZED - c-ares library initialization not yet performed.

dns.LOADIPHLPAPI - Error loading iphlpapi.dll.

dns.ADDRGETNETWORKPARAMS - Could not find GetNetworkParams function.

dns.CANCELLED - DNS query cancelled.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var dns = require('dns');

dns.lookup('www.google.com', function onLookup(err, address, family) {
 console.log('address:', address);
 dns.reverse(address, function (err, hostnames) {
 if (err) {
 console.log(err.stack);
 }

 console.log('reverse for ' + address + ': ' + JSON.stringify(hostnames));
});
});

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

address: 74.125.200.103
reverse for 74.125.200.103: ["sa-in-f103.1e100.net"]

NODE.JS - DOMAIN MODULENODE.JS - DOMAIN MODULE
domain module is used to intercept unhandled error. These unhandled error can be intercepted
using internal binding or external binding. If errors are not handled at all then they will simply
crash the Node application.

Internal Binding - Error emmitter is executing its code within run method of a domain.

External Binding - Error emmitter is added explicitly to a domain using its add method.

domain module can be imported using following syntax.

var domain = require("domain")

Domain class of domain module is used to provide functionality of routing errors and uncaught
exceptions to the active Domain object. It is a child class of EventEmitter. To handle the errors that
it catches, listen to its error event. It is created using following syntax:

var domain = require("domain");
var domain1 = domain.create();

Methods

Sr.
No.

method Description

1 domain.runfunction Run the supplied function in the context of the domain,
implicitly binding all event emitters, timers, and lowlevel
requests that are created in that context.This is the most
basic way to use a domain.

2 domain.addemitter Explicitly adds an emitter to the domain. If any event
handlers called by the emitter throw an error, or if the
emitter emits an error event, it will be routed to the
domain's error event, just like with implicit binding.

3 domain.removeemitter The opposite of domain.addemitter. Removes domain
handling from the specified emitter.

4 domain.bindcallback The returned function will be a wrapper around the
supplied callback function. When the returned function is
called, any errors that are thrown will be routed to the
domain's error event.

5 domain.interceptcallback This method is almost identical to domain.bindcallback.
However, in addition to catching thrown errors, it will also

intercept Error objects sent as the first argument to the
function.

6 domain.enter The enter method is plumbing used by the run, bind, and
intercept methods to set the active domain. It sets
domain.active and process.domain to the domain, and
implicitly pushes the domain onto the domain stack
managed by the domain module see domain.exit(for
details on the domain stack). The call to enter delimits the
beginning of a chain of asynchronous calls and I/O
operations bound to a domain.

7 domain.exit The exit method exits the current domain, popping it off
the domain stack. Any time execution is going to switch to
the context of a different chain of asynchronous calls, it's
important to ensure that the current domain is exited. The
call to exit delimits either the end of or an interruption to
the chain of asynchronous calls and I/O operations bound
to a domain.

8 domain.dispose Once dispose has been called, the domain will no longer
be used by callbacks bound into the domain via run, bind,
or intercept, and a dispose event is emit

Properties

Sr.No. Property Description

1 domain.members An array of timers and event emitters that have been explicitly
added to the domain.

Example
Create a js file named test.js in C:\>Nodejs_WorkSpace.

File: test.js

var EventEmitter = require("events").EventEmitter;
var domain = require("domain");

var emitter1 = new EventEmitter();

//Create a domain
var domain1 = domain.create();

domain1.on('error', function(err){
 console.log("domain1 handled this error ("+err.message+")");
});

//explicit binding
domain1.add(emitter1);

emitter1.on('error',function(err){
 console.log("listener handled this error ("+err.message+")");
});

emitter1.emit('error',new Error('To be handled by listener'));

emitter1.removeAllListeners('error');

emitter1.emit('error',new Error('To be handled by domain1'));

var domain2 = domain.create();

domain2.on('error', function(err){
 console.log("domain2 handled this error ("+err.message+")");
});

//implicit binding
domain2.run(function(){
 var emitter2 = new EventEmitter();

 emitter2.emit('error',new Error('To be handled by domain2'));
});

domain1.remove(emitter1);

emitter1.emit('error',new Error('Converted to exception. System will crash!'));

Now run the test.js to see the result:

C:\Nodejs_WorkSpace>node test.js

Verify the Output.

listener handled this error (To be handled by listener)
domain1 handled this error (To be handled by domain1)
domain2 handled this error (To be handled by domain2)

events.js:72
 throw er; // Unhandled 'error' event
 ^
Error: Converted to exception. System will crash!
 at Object.<anonymous> (C:\Nodejs_WorkSpace\test.js:42:23)
 at Module._compile (module.js:456:26)
 at Object.Module._extensions..js (module.js:474:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 at Function.Module.runMain (module.js:497:10)
 at startup (node.js:119:16)
 at node.js:929:3

NODE.JS - WEB MODULENODE.JS - WEB MODULE
Introduction to Web Server
Web Server is a software application which processes request using HTTP protocol and returns
web pages as response to the clients. Web servers usually delivers html documents along with
images, style sheets and scripts. Most web server also support server side scripts using scripting
language or redirect to application server which perform the specific task of getting data from
database, perform complex logic etc. Web server then returns the output of the application server
to client.

Apache web server is one of the most common web server being used. It is an open source project.

Path locating process
Web server maps the path of a file using URL, Uniform Resource Locator. It can be a local file
system or a external/internal program. For example:

A client makes a request using browser, URL: http://www.test-example-site.com/website/index.htm.

Browser will make request as:

GET /website/index.htm HTTP /1.1

HOST www.test-example-site.com

Web Server will append the path to its root directory. Consider,for example the root directory is
home/www then actual path will be translated to home/www/website/index.htm.

Introduction to web architecture
Web application are using divided into four layers:

Client - This layer consists of web browsers, mobile browsers or applications which can make
HTTP request to server.

Server - This layer consists of Web server which can intercepts the request made by clients
and pass them the response.

Business - This layer consists of application server which is utilized by web server to do
dynamic tasks. This layer interacts with data layer via data base or some external programs.

Data - This layer consists of databases or any source of data.

Creating Web Server using Node
Create an HTTP server using http.createServer method. Pass it a function with parameters request
and response. Write the sample implementation to return a requested page. Pass a port 8081 to
listen method.

Create a js file named server.js in C:\>Nodejs_WorkSpace.

File: server.js

//http module is required to create a web server
var http = require('http');
//fs module is required to read file from file system
var fs = require('fs');
//url module is required to parse the URL passed to server
var url = require('url');

//create the server
http.createServer(function (request, response) {
 //parse the pathname containing file name
 var pathname = url.parse(request.url).pathname;
 //print the name of the file for which request is made.
 //if url is http://localhost:8081/test.htm then
 //pathname will be /test.htm
 console.log("Request for " + pathname + " received.");
 //read the requested file content from file system
 fs.readFile(pathname.substr(1), function (err, data) {
 //if error occured during file read
 //send a error response to client
 //that web page is not found.
 if (err) {
 console.log(err.stack);
 // HTTP Status: 404 : NOT FOUND
 // Content Type: text/plain
 response.writeHead(404, {'Content-Type': 'text/html'});
 }else{
 //Page found
 // HTTP Status: 200 : OK
 // Content Type: text/plain
 response.writeHead(200, {'Content-Type': 'text/html'});
 // write the content of the file to response body
 response.write(data.toString());
 }
 // send the response body
 response.end();
 });
}).listen(8081);
// console will print the message

console.log('Server running at http://127.0.0.1:8081/');

Create a htm file named test.htm in C:\>Nodejs_WorkSpace.

File: test.htm

<html>
<head>
<title>Sample Page</title>
</head>
<body>
Hello World!
</body>
</html>

Now run the server.js to see the result:

C:\Nodejs_WorkSpace>node server.js

Verify the Output. Server has started

Server running at http://127.0.0.1:8081/

Make a request to Node.js server
Open http://127.0.0.1:8081/test.htm in any browser and see the below result.

Verify the Output at server end.

Server running at http://127.0.0.1:8081/
Request for /test.htm received.

Creating Web client using Node
A web client can be created using http module. See the below example:

Create a js file named client.js in C:\>Nodejs_WorkSpace.

File: client.js

//http module is required to create a web client
var http = require('http');

//options are to be used by request
var options = {
 host: 'localhost',
 port: '8081',

 path: '/test.htm'
};

//callback function is used to deal with response
var callback = function(response){
 // Continuously update stream with data
 var body = '';
 response.on('data', function(data) {
 body += data;
 });
 response.on('end', function() {
 // Data received completely.
 console.log(body);
 });
}
//make a request to the server
var req = http.request(options, callback);
req.end();

Now run the client.js in a different command terminal other than of server.js to see the result:

C:\Nodejs_WorkSpace>node client.js

Verify the Output.

<html>
<head>
<title>Sample Page</title>
</head>
<body>
Hello World!
</body>
</html>

Verify the Output at server end.

Server running at http://127.0.0.1:8081/
Request for /test.htm received.
Request for /test.htm received.

NODE.JS - EXPRESS APPLICATIONNODE.JS - EXPRESS APPLICATION
Express Overview
Express JS is a very popular web application framework built to create Node JS Web based
applications. It provides an integrated environment to facilitate rapid development of Node based
Web applications. Express framework is based on Connect middleware engine and used Jade html
template framework for HTML templating. Following are some of the core features of Express
framework:

Allows to set up middlewares to respond to HTTP Requests.

Defines a routing table which is used to perform different action based on HTTP Method and
URL.

Allows to dynamically render HTML Pages based on passing arguments to templates.

Installing Express
Firstly, install the Express framework globally using npm so that it can be used to create web
application using node terminal.

C:\Nodejs_WorkSpace>npm install express - g

Once npm completes the download, you can verify by looking at the content of <user-
directory>/npm/node_modules. Or type the following command:

C:\Nodejs_WorkSpace>npm ls -g

You will see the following output:

C:\Documents and Settings\Administrator\Application Data\npm
+-- express@4.11.2
 +-- accepts@1.2.3
 | +-- mime-types@2.0.8
 | | +-- mime-db@1.6.1
 | +-- negotiator@0.5.0
 +-- content-disposition@0.5.0
 +-- cookie@0.1.2
 +-- cookie-signature@1.0.5
 +-- debug@2.1.1
 | +-- ms@0.6.2
 +-- depd@1.0.0
 +-- escape-html@1.0.1
 +-- etag@1.5.1
 | +-- crc@3.2.1
 +-- finalhandler@0.3.3
 +-- fresh@0.2.4
 +-- media-typer@0.3.0
 +-- merge-descriptors@0.0.2
 +-- methods@1.1.1
 +-- on-finished@2.2.0
 | +-- ee-first@1.1.0
 +-- parseurl@1.3.0
 +-- path-to-regexp@0.1.3
 +-- proxy-addr@1.0.6
 | +-- forwarded@0.1.0
 | +-- ipaddr.js@0.1.8
 +-- qs@2.3.3
 +-- range-parser@1.0.2
 +-- send@0.11.1
 | +-- destroy@1.0.3
 | +-- mime@1.2.11
 | +-- ms@0.7.0
 +-- serve-static@1.8.1
 +-- type-is@1.5.6
 | +-- mime-types@2.0.8
 | +-- mime-db@1.6.1
 +-- utils-merge@1.0.0
 +-- vary@1.0.0

Express Generator
Now install the express generator using npm. Express generator is used to create an application
skeleton using express command.

C:\Nodejs_WorkSpace> npm install express-generator -g

You will see the following output:

C:\Nodejs_WorkSpace>npm install express-generator -g
C:\Documents and Settings\Administrator\Application Data\npm\express -> C:\Docum
ents and Settings\Administrator\Application Data\npm\node_modules\express-
generator\bin\express
express-generator@4.12.0 C:\Documents and Settings\Administrator\Application
Data\npm\node_modules\express-generator
+-- sorted-object@1.0.0
+-- commander@2.6.0
+-- mkdirp@0.5.0 (minimist@0.0.8)

Hello world Example
Now create a sample application say firstApplication using the following command:

C:\Nodejs_WorkSpace> express firstApplication

You will see the following output:

 create : firstApplication
 create : firstApplication/package.json

 create : firstApplication/app.js
 create : firstApplication/public
 create : firstApplication/public/javascripts
 create : firstApplication/public/images
 create : firstApplication/public/stylesheets
 create : firstApplication/public/stylesheets/style.css
 create : firstApplication/routes
 create : firstApplication/routes/index.js
 create : firstApplication/routes/users.js
 create : firstApplication/views
 create : firstApplication/views/index.jade
 create : firstApplication/views/layout.jade
 create : firstApplication/views/error.jade
 create : firstApplication/bin
 create : firstApplication/bin/www

 install dependencies:
 $ cd firstApplication && npm install

 run the app:
 $ DEBUG=firstApplication:* ./bin/www

Move to firstApplication folder and install dependencies of firstApplication using the following
command:

C:\Nodejs_WorkSpace\firstApplication> npm install

You will see the following output:

debug@2.1.2 node_modules\debug
+-- ms@0.7.0

cookie-parser@1.3.4 node_modules\cookie-parser
+-- cookie-signature@1.0.6
+-- cookie@0.1.2

morgan@1.5.1 node_modules\morgan
+-- basic-auth@1.0.0
+-- depd@1.0.0
+-- on-finished@2.2.0 (ee-first@1.1.0)

serve-favicon@2.2.0 node_modules\serve-favicon
+-- ms@0.7.0
+-- fresh@0.2.4
+-- parseurl@1.3.0
+-- etag@1.5.1 (crc@3.2.1)

jade@1.9.2 node_modules\jade
+-- character-parser@1.2.1
+-- void-elements@2.0.1
+-- commander@2.6.0
+-- mkdirp@0.5.0 (minimist@0.0.8)
+-- transformers@2.1.0 (promise@2.0.0, css@1.0.8, uglify-js@2.2.5)
+-- with@4.0.1 (acorn-globals@1.0.2, acorn@0.11.0)
+-- constantinople@3.0.1 (acorn-globals@1.0.2)

express@4.12.2 node_modules\express
+-- merge-descriptors@1.0.0
+-- cookie-signature@1.0.6
+-- methods@1.1.1
+-- cookie@0.1.2
+-- fresh@0.2.4
+-- utils-merge@1.0.0
+-- range-parser@1.0.2
+-- escape-html@1.0.1
+-- parseurl@1.3.0
+-- vary@1.0.0
+-- content-type@1.0.1
+-- finalhandler@0.3.3
+-- serve-static@1.9.1
+-- content-disposition@0.5.0
+-- path-to-regexp@0.1.3
+-- depd@1.0.0

+-- qs@2.3.3
+-- on-finished@2.2.0 (ee-first@1.1.0)
+-- etag@1.5.1 (crc@3.2.1)
+-- proxy-addr@1.0.6 (forwarded@0.1.0, ipaddr.js@0.1.8)
+-- send@0.12.1 (destroy@1.0.3, ms@0.7.0, mime@1.3.4)
+-- accepts@1.2.4 (negotiator@0.5.1, mime-types@2.0.9)
+-- type-is@1.6.0 (media-typer@0.3.0, mime-types@2.0.9)

body-parser@1.12.0 node_modules\body-parser
+-- content-type@1.0.1
+-- bytes@1.0.0
+-- raw-body@1.3.3
+-- depd@1.0.0
+-- qs@2.3.3
+-- iconv-lite@0.4.7
+-- on-finished@2.2.0 (ee-first@1.1.0)
+-- type-is@1.6.0 (media-typer@0.3.0, mime-types@2.0.9)

Here express generator has created a complete application structure which you can verify as
firstApplication folder gets created in Nodejs_WorkSpace folder with following folders/files:

.
+-- app.js
+-- bin
| +-- www
+-- package.json
+-- public
| +-- images
| +-- javascripts
| +-- stylesheets
| +-- style.css
+-- routes
| +-- index.js
| +-- users.js
+-- views
 +-- error.jade
 +-- index.jade
 +-- layout.jade

package.json Application descriptor file contains dependencies list and other attributes of
the application which Node utilizes.

app.js Contains initialization code for server.

bin Used to store the applicaion in production mode.

public Used to store the images, stylesheets and javascript files

routes Contains route handlers

views Contains html templates to generate various views for web application.

First Application
app.js is the core engine of express based application. Let's update the default app.js to include
port information and creates a server using it. Add the following lines to app.js

//set the server port
app.set('port', process.env.PORT || 3000);

//create the server
http.createServer(app).listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

Updated app.js
Following are the full content of the app.js file

Update app.js file present in C:\>Nodejs_WorkSpace\firstApplication.

File: app.js

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var http = require('http');

var routes = require('./routes/index');
var users = require('./routes/users');

var app = express();

// view engine setup
app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

// uncomment after placing your favicon in /public
//app.use(favicon(__dirname + '/public/favicon.ico'));
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);
app.use('/users', users);

// catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

// error handlers

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

http.createServer(app).listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

module.exports = app;

Now run the app.js to see the result:

C:\Nodejs_WorkSpace\firstApplication>node app

Verify the Output. Server has started

Express server listening on port 3000

Make a request to firstApplication
Open http://localhost:3000/ in any browser and see the below result.

Basic Routing
Following code in app.js binds two route handlers.

var routes = require('./routes/index');
var users = require('./routes/users');
...
app.use('/', routes);
app.use('/users', users);

routes - routes index.js, route handler handles all request made to home page via
localhost:3000

users - users users.js, route handler handles all request made to /users via
localhost:3000/users

Following is the code of C:\>Nodejs_WorkSpace\firstApplication\routes\index.js created by
express generator.

var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res, next) {
 res.render('index', { title: 'Express' });
});

module.exports = router;

When node server gets a request for home page, express router render the index page using
index.jade template while passing a parameter title with value 'Express'. Following are the
contents of C:\>Nodejs_WorkSpace\firstApplication\views\index.jade template.

extends layout

block content
 h1= title
 p Welcome to #{title}

NODE.JS - ENHANCING FIRST APPLICATIONNODE.JS - ENHANCING FIRST APPLICATION
Overview

In this article, we'll enhance the express js application created in Express Application chapter to do
the following functionalities:

Show list of all the users.

Show details of a particular user.

Add details of new user.

Step 1: Create a JSON based database
Firstly, let's create a sample json based database of users.

Create a json file named user.json in C:\>Nodejs_WorkSpace\firstApplication.

File: user.json

{
 "user1" : {
 "name" : "mahesh",
 "password" : "password1",
 "profession" : "teacher"
 },
 "user2" : {
 "name" : "suresh",
 "password" : "password2",
 "profession" : "librarian"
 },
 "user3" : {
 "name" : "ramesh",
 "password" : "password3",
 "profession" : "clerk"
 }
}

Step 2: Create Users specific Jade Views
Create a user directory in C:\>Nodejs_WorkSpace\firstApplication\views directory with the
following views.

index.jade - View to show list of all users.

new.jade - View to show a form to add a new user.

profile.jade - View to show detail of an user

Create a index.jade in C:\>Nodejs_WorkSpace\firstApplication\views\users.

File: index.jade

h1 Users

p
 a(href="/users/new/") Create new user
ul
 - for (var username in users) {
 li
 a(href="/users/" + encodeURIComponent(username))= users[username].name
 - };

Create a new.jade in C:\>Nodejs_WorkSpace\firstApplication\views\users.

File: index.jade

h1 New User

form(method="POST" action="/Users/addUser")
 P
 label(for="name") Name

 input#name(name="name")
 P

/nodejs/nodejs_express_application.htm

 label(for="password") Password

 input#name(name="password")
 P
 label(for="profession") Profession

 input#name(name="profession")
 P
 input(type="submit", value="Create")

Create a profile.jade in C:\>Nodejs_WorkSpace\firstApplication\views\users.

File: profile.jade

h1 Name: #{user.name}

h2 Profession: #{user.profession}

Step 3: Update users route handler, users.js
Update users.js in C:\>Nodejs_WorkSpace\firstApplication\routes.

File: users.js

var express = require('express');
var router = express.Router();

var users = require('../users.json');
/* GET users listing. */
router.get('/', function(req, res) {
 res.render('users/index', { title: 'Users',users:users });
});

/* Get form to add a new user*/
router.get('/new', function(req, res) {
 res.render('users/new', { title: 'New User'});
});

/* Get detail of a new user */
router.get('/:name', function(req, res, next) {
 var user = users[req.params.name]
 if(user){
 res.render('users/profile', { title: 'User Profile', user:user});
 }else{
 next();
 }
});

/* post the form to add new user */
router.post('/addUser', function(req, res, next) {
 if(users[req.body.name]){
 res.send('Conflict', 409);
 }else{
 users[req.body.name] = req.body;
 res.redirect('/users/');
 }
});

module.exports = router;

Now run the app.js to see the result:

C:\Nodejs_WorkSpace\firstApplication>node app

Verify the Output. Server has started

Express server listening on port 3000

Make a request to firstApplication to get list of all the users. Open http://localhost:3000/users in
any browser and see the below result.

Click on Create new User link to see a form.

Submit form and see the updated list.

Click on newly created user to see the details.

You can check the server status also as following:

C:\Nodejs_WorkSpace\firstApplication>node app
Express server listening on port 3000
GET /users/ 200 809.161 ms - 201
GET /users/new/ 304 101.627 ms - -
GET /users/new/ 304 33.496 ms - -
POST /Users/addUser 302 56.206 ms - 70
GET /users/ 200 43.548 ms - 245
GET /users/naresh 200 12.313 ms - 47

NODE.JS - RESTFUL APINODE.JS - RESTFUL API
What is REST architecture?
REST stands for REpresentational State Transfer. REST is web standards based architecture and
uses HTTP Protocol. It revolves around resource where every component is a resource and a
resource is accessed by a common interface using HTTP standard methods. REST was first
introduced by Roy Fielding in 2000.

In REST architecture, a REST Server simply provides access to resources and REST client accesses
and modifies the resources. Here each resource is identified by URIs/ global IDs. REST uses various
representation to represent a resource like text, JSON, XML. JSON is the most popular one.

HTTP methods
Following four HTTP methods are commonly used in REST based architecture.

GET - Provides a read only access to a resource.

PUT - Used to create a new resource.

DELETE - Used to remove a resource.

POST - Used to update a existing resource or create a new resource.

Introduction to RESTFul web services
A web service is a collection of open protocols and standards used for exchanging data between
applications or systems. Software applications written in various programming languages and
running on various platforms can use web services to exchange data over computer networks like
the Internet in a manner similar to inter-process communication on a single computer. This
interoperability e.g., between Java and Python, or Windows and Linux applications is due to the use
of open standards.

Web services based on REST Architecture are known as RESTful web services. These webservices
uses HTTP methods to implement the concept of REST architecture. A RESTful web service usually
defines a URI, Uniform Resource Identifier a service, provides resource representation such as
JSON and set of HTTP Methods.

Creating RESTFul for A Library

INow, we'll enhance the express js application created in Express Sample Application chapter to
create a webservice say user management with following functionalities:

Sr. No. URI HTTP Method POST body Result

1 /users/ GET empty Show list of all the users.

2 /users/addUser POST JSON String Add details of new user.

3 /users/:id GET empty Show details of a user.

Getting All users
Firstly, let's update a sample json based database of users.

Update json file named user.json in C:\>Nodejs_WorkSpace\firstApplication.

File: user.json

{
 "user1" : {
 "name" : "mahesh",
 "password" : "password1",
 "profession" : "teacher",
 "id": 1
 },
 "user2" : {
 "name" : "suresh",
 "password" : "password2",
 "profession" : "librarian",
 "id": 2
 },
 "user3" : {
 "name" : "ramesh",
 "password" : "password3",
 "profession" : "clerk",
 "id": 3
 }
}

When a client send a GET request to /users, server should send a response containing all the user.
Update users route handler, users.js

Update users.js in C:\>Nodejs_WorkSpace\firstApplication\routes.

File: users.js

/* GET users listing. */
router.get('/', function(req, res) {
 res.send({ title: 'Users',users:users });
});

Add details of new user.
When a client send a POST request to /users/addUser with body containing the JSON String, server
should send a response stating the status. Update users route handler, users.js

Update users.js in C:\>Nodejs_WorkSpace\firstApplication\routes.

File: users.js

/*add a user*/
router.post('/addUser', function(req, res, next) {
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 var json = JSON.parse(body);

/nodejs/nodejs_express_sample_application.htm

 users["user"+json.id] = body;
 res.send({ Message: 'User Added'});
 });
});

Show details of new user.
When a client send a GET request to /users with an id, server should send a response containing
detail of that user. Update users route handler, users.js

Update users.js in C:\>Nodejs_WorkSpace\firstApplication\routes.

File: users.js

router.get('/:id', function(req, res, next) {
 var user = users["user" + req.params.id]
 if(user){
 res.send({ title: 'User Profile', user:user});
 }else{
 res.send({ Message: 'User not present'});
 }
});

Complete User.js
File: users.js

var express = require('express');
var router = express.Router();

var users = require('../users.json');
/* GET users listing. */
router.get('/', function(req, res) {
 res.send({ title: 'Users',users:users });
});

router.get('/:id', function(req, res, next) {
 console.log(req.params)
 var user = users["user" + req.params.id]
 if(user){
 res.send({ title: 'User Profile', user:user});
 }else{
 res.send({ Message: 'User not present'});
 }
});

router.post('/addUser', function(req, res, next) {
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 var json = JSON.parse(body);
 users["user"+json.id] = body;
 res.send({ Message: 'User Added'});
 });
});

module.exports = router;

Output
We are using Postman, a Chrome extension, to test our webservices.

Now run the app.js to see the result:

C:\Nodejs_WorkSpace\firstApplication>node app

Verify the Output. Server has started

Express server listening on port 3000

http://www.getpostman.com/

Make a request to firstApplication to get list of all the users. Put http://localhost:3000/users in
POSTMAN with GET request and see the below result.

Make a request to firstApplication to add a new user. Put http://localhost:3000/users/addUser in
POSTMAN with POST request and see the below result.

Make sure to add json body in and select POST as method.

{"name":"rakesh","password":"password4","profession":"teacher","id":4}

Make a request to firstApplication to get a user. Put http://localhost:3000/users/1 in POSTMAN with
GET request and see the below result.

NODE.JS - SCALING APPLICATIONNODE.JS - SCALING APPLICATION
As node runs in a single thread mode, it uses an event-driven paradigm to handle concurrency. It
also facilitates creation of child processes to leverage parallel processing on multi-core cpu based
systems.

Child processes always have three streams child.stdin, child.stdout, and child.stderr which may be
shared with the stdio streams of the parent process. they may be a separate stream objects which
can be piped to and from.

There are three major ways to create child process.

exec - child_process.exec method runs a command in a shell/console and buffers the output.

spawn - child_process.spawn launches a new process with a given command

fork - The child_process.fork method is a special case of the spawn to create Node
processes.

exec method
child_process.exec method runs a command in a shell and buffers the output. It has the following
signature

child_process.exec(command[, options], callback)

command String The command to run, with space-separated arguments

options Object

cwd String Current working directory of the child process

env Object Environment key-value pairs

encoding String Default: 'utf8'

shell String Shell to execute the command with Default: '/bin/sh' on UNIX, 'cmd.exe' on
Windows, The shell should understand the -c switch on UNIX or /s /c on Windows. On
Windows, command line parsing should be compatible with cmd.exe.

timeout Number Default: 0

maxBuffer Number Default: 200*1024

killSignal String Default: 'SIGTERM'

uid Number Sets the user identity of the process.

gid Number Sets the group identity of the process.

callback Function called with the output when process terminates

error Error

stdout Buffer

stderr Buffer

Return: ChildProcess object

exec returns a buffer with a max size and waits for the process to end and tries to return all the
buffered data at once

Example
Create two js file named worker.js and master.js in C:\>Nodejs_WorkSpace.

File: worker.js

console.log("Child Process "+ process.argv[2] +" executed.");

File: master.js

const fs = require('fs');
const child_process = require('child_process');

for(var i=0; i<3; i++) {
 var workerProcess = child_process.exec('node worker.js '+i,
 function (error, stdout, stderr) {
 if (error) {
 console.log(error.stack);
 console.log('Error code: '+error.code);
 console.log('Signal received: '+error.signal);
 }
 console.log('stdout: ' + stdout);
 console.log('stderr: ' + stderr);
 });

 workerProcess.on('exit', function (code) {
 console.log('Child process exited with exit code '+code);
 });
}

Now run the master.js to see the result:

C:\Nodejs_WorkSpace>node master.js

Verify the Output. Server has started

Child process exited with exit code 0
stdout: Child Process 1 executed.

stderr:
Child process exited with exit code 0
stdout: Child Process 0 executed.

stderr:
Child process exited with exit code 0
stdout: Child Process 2 executed.

spawn method
child_process.spawn method launches a new process with a given command. It has the following
signature

child_process.spawn(command[, args][, options])

command String The command to run

args Array List of string arguments

options Object

cwd String Current working directory of the child process

env Object Environment key-value pairs

stdio Array|String Child's stdio configuration

customFds Array Deprecated File descriptors for the child to use for stdio

detached Boolean The child will be a process group leader

uid Number Sets the user identity of the process.

gid Number Sets the group identity of the process.

Return: ChildProcess object

spawn returns streams stdout & stderr and it should be used when the process returns large
amount of data. spawn starts receiving the response as soon as the process starts executing.

Example
Create two js file named worker.js and master.js in C:\>Nodejs_WorkSpace.

File: worker.js

console.log("Child Process "+ process.argv[2] +" executed.");

File: master.js

const fs = require('fs');
const child_process = require('child_process');

for(var i=0; i<3; i++) {
 var workerProcess = child_process.spawn('node', ['worker.js', i]);

 workerProcess.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
 });

 workerProcess.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
 });

 workerProcess.on('close', function (code) {
 console.log('child process exited with code ' + code);
 });
}

Now run the master.js to see the result:

C:\Nodejs_WorkSpace>node master.js

Verify the Output. Server has started

stdout: Child Process 0 executed.

child process exited with code 0
stdout: Child Process 2 executed.

child process exited with code 0
stdout: Child Process 1 executed.

child process exited with code 0

fork method
child_process.fork method is a special case of the spawn to create Node processes. It has the
following signature

child_process.fork(modulePath[, args][, options])

modulePath String The module to run in the child

args Array List of string arguments

options Object

cwd String Current working directory of the child process

env Object Environment key-value pairs

execPath String Executable used to create the child process

execArgv Array List of string arguments passed to the executable Default:
process.execArgv

silent Boolean If true, stdin, stdout, and stderr of the child will be piped to the parent,
otherwise they will be inherited from the parent, see the "pipe" and "inherit" options for
spawn's stdio for more details default is false

uid Number Sets the user identity of the process.

gid Number Sets the group identity of the process.

Return: ChildProcess object

fork returns object with a built-in communication channel in addition to having all the methods in a
normal ChildProcess instance.

Example
Create two js file named worker.js and master.js in C:\>Nodejs_WorkSpace.

File: worker.js

console.log("Child Process "+ process.argv[2] +" executed.");

File: master.js

const fs = require('fs');
const child_process = require('child_process');

for(var i=0; i<3; i++) {
 var worker_process = child_process.fork("worker.js", [i]);

 worker_process.on('close', function (code) {
 console.log('child process exited with code ' + code);
 });
}

Now run the master.js to see the result:

C:\Nodejs_WorkSpace>node master.js

Verify the Output. Server has started

Child Process 0 executed.
Child Process 1 executed.
Child Process 2 executed.
child process exited with code 0
child process exited with code 0
child process exited with code 0

Processing math: 68%

